Pub Date : 2024-07-04DOI: 10.1142/s2251171724500077
D. Gallardo, R. Finger, F. Solis, D. Monasterio, S. Jorquera, J. Pizarro, J. Riquelme, F. Curotto, F. Pizarro, L. Bronfman
{"title":"An Ultra-Wideband Dual Polarization Antenna Array for the Detection and Localization of Bright Fast Radio Transients in the Milky Way","authors":"D. Gallardo, R. Finger, F. Solis, D. Monasterio, S. Jorquera, J. Pizarro, J. Riquelme, F. Curotto, F. Pizarro, L. Bronfman","doi":"10.1142/s2251171724500077","DOIUrl":"https://doi.org/10.1142/s2251171724500077","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141677562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-06DOI: 10.1142/s2251171724500065
J. Tutt, Keir Hunter, Vincent A. Smedile, Jessica Mondoskin, Garrett Brady, Katherine Brooks, R. McCurdy, Randall L. McEntaffer, D. Miles
{"title":"A rail-mounted pumping system developed for suborbital rockets","authors":"J. Tutt, Keir Hunter, Vincent A. Smedile, Jessica Mondoskin, Garrett Brady, Katherine Brooks, R. McCurdy, Randall L. McEntaffer, D. Miles","doi":"10.1142/s2251171724500065","DOIUrl":"https://doi.org/10.1142/s2251171724500065","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141378555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1142/s2251171724500041
John Podczerwinski, Peter Timbie
This paper describes the design of a 5.5:1 bandwidth feed antenna and reflector system, intended for use in hydrogen intensity mapping experiments. The system is optimized to reduce systematic effects that can arise in these experiments from scattering within the feed/reflector and cross-coupling between antennas. The proposed feed is an ultra wideband Vivaldi style design and was optimized to have a smooth frequency response, high gain, and minimal shadowing of the reflector dish. This feed can optionally include absorptive elements which reduce systematics but degrade sensitivity. The proposed reflector is a deep parabolic dish with $f/d = 0.216$ along with an elliptical collar to provide additional shielding. The procedure for optimizing these design choices is described.
{"title":"Design of an Ultra-Wideband Antenna Feed and Reflector for use in Hydrogen Intensity Mapping Interferometers","authors":"John Podczerwinski, Peter Timbie","doi":"10.1142/s2251171724500041","DOIUrl":"https://doi.org/10.1142/s2251171724500041","url":null,"abstract":"This paper describes the design of a 5.5:1 bandwidth feed antenna and reflector system, intended for use in hydrogen intensity mapping experiments. The system is optimized to reduce systematic effects that can arise in these experiments from scattering within the feed/reflector and cross-coupling between antennas. The proposed feed is an ultra wideband Vivaldi style design and was optimized to have a smooth frequency response, high gain, and minimal shadowing of the reflector dish. This feed can optionally include absorptive elements which reduce systematics but degrade sensitivity. The proposed reflector is a deep parabolic dish with $f/d = 0.216$ along with an elliptical collar to provide additional shielding. The procedure for optimizing these design choices is described.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136312445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-27DOI: 10.1142/s225117172450003x
Zaid Bin Tariq, Teviet Creighton, Louis P. Dartez, Naofal Al-Dhahir, Murat Torlak
{"title":"Low Complexity Radio Frequency Interference Mitigation for Radio Astronomy Using Large Antenna Array","authors":"Zaid Bin Tariq, Teviet Creighton, Louis P. Dartez, Naofal Al-Dhahir, Murat Torlak","doi":"10.1142/s225117172450003x","DOIUrl":"https://doi.org/10.1142/s225117172450003x","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136312486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-13DOI: 10.1142/s2251171724500028
Juhun Kwak, John Podczerwinski, Peter Timbie, Reza Ansari, John Marriner, Albert Stebbins, Fengquan Wu, Haotian Cao, Xuelei Chen, Kai He, Jixia Li, Shijie Sun, Jiacong Zhu
The visibilities measured by radio astronomical interferometers include non-astronomical correlated signals that arise from the local environment of the array. These correlated signals are especially important in compact arrays such as those under development for 21,cm intensity mapping. The amplitudes of the contaminated visibilities can exceed the expected 21,cm signal and represent a significant systematic effect. We study the receiver noise radiated by antennas in compact arrays and develop a model for how it couples to other antennas. We apply the model to the Tianlai Dish Pathfinder Array (TDPA), a compact array of 16, 6-m dish antennas. The coupling model includes electromagnetic simulations, measurements with a network analyzer, and measurements of the noise of the receivers. We compare the model to drift-scan observations with the array and set requirements on the level of antenna cross-coupling for 21,cm intensity mapping instruments. We find that for the TDPA, cross-coupling would have to be reduced by TBD orders of magnitude in order to contribute negligibly to the visibilities.
{"title":"The Effects of the Local Environment on a Compact Radio Interferometer I: Cross-coupling in the Tianlai Dish Pathfinder Array","authors":"Juhun Kwak, John Podczerwinski, Peter Timbie, Reza Ansari, John Marriner, Albert Stebbins, Fengquan Wu, Haotian Cao, Xuelei Chen, Kai He, Jixia Li, Shijie Sun, Jiacong Zhu","doi":"10.1142/s2251171724500028","DOIUrl":"https://doi.org/10.1142/s2251171724500028","url":null,"abstract":"The visibilities measured by radio astronomical interferometers include non-astronomical correlated signals that arise from the local environment of the array. These correlated signals are especially important in compact arrays such as those under development for 21,cm intensity mapping. The amplitudes of the contaminated visibilities can exceed the expected 21,cm signal and represent a significant systematic effect. We study the receiver noise radiated by antennas in compact arrays and develop a model for how it couples to other antennas. We apply the model to the Tianlai Dish Pathfinder Array (TDPA), a compact array of 16, 6-m dish antennas. The coupling model includes electromagnetic simulations, measurements with a network analyzer, and measurements of the noise of the receivers. We compare the model to drift-scan observations with the array and set requirements on the level of antenna cross-coupling for 21,cm intensity mapping instruments. We find that for the TDPA, cross-coupling would have to be reduced by TBD orders of magnitude in order to contribute negligibly to the visibilities.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135917882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-05DOI: 10.1142/s2251171724500016
P. B. Lerner, P. H. Cutler, N. Miskovsky, T. E. Sullivan, A. Mayer
{"title":"Interferometric determination for cosmological and stellar phenomena","authors":"P. B. Lerner, P. H. Cutler, N. Miskovsky, T. E. Sullivan, A. Mayer","doi":"10.1142/s2251171724500016","DOIUrl":"https://doi.org/10.1142/s2251171724500016","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45177751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-23DOI: 10.1142/s2251171723500125
S. Sriram, V. Valsan, A. Hoodati, A. Subramaniam, G. Maheswar
{"title":"DMD based Multi-Object Spectrograph for INdian Spectroscopic and Imaging Space Telescope: INSIST","authors":"S. Sriram, V. Valsan, A. Hoodati, A. Subramaniam, G. Maheswar","doi":"10.1142/s2251171723500125","DOIUrl":"https://doi.org/10.1142/s2251171723500125","url":null,"abstract":"","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43228316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-28DOI: 10.1142/s2251171723500101
P. Madhwani, A. Kutty, B. Mookerjea, J. Parmar, V. Kurhade, S. D’costa, P. Manoj, A. Surya
We present a cryogenic configurable slit unit (CSU) for a multi object infrared spectrograph with an effective field of view of 9.1 arcmin x 9.1 arcmin that was completely conceived and designed in the laboratory at TIFR. Several components of the CSU including the controller for the commercially procured piezo-walkers, controlled loop position sensing mechanism using digital slide callipers and a cryogenic test facility for the assembled prototype were also developed in-house. The principle of the CSU involves division of the field of view of the spectrometer into contiguous and parallel spatial bands, each one associated with two opposite sliding metal bars that can be positioned to create a slit needed to make spectroscopic observations of one astronomical object. A three-slit prototype of the newly designed CSU was built and tested extensively at ambient and cryogenic temperatures. The performance of the CSU was found to be as per specifications.
我们提出了一种用于多目标红外光谱仪的低温可配置狭缝单元(CSU),其有效视场为9.1 arcmin x 9.1 arcmin,这是在TIFR实验室中完全构思和设计的。CSU的几个部件,包括商业采购的压电步行器的控制器、使用数字游标卡尺的受控回路位置传感机构以及组装原型的低温测试设施,也在内部开发。CSU的原理包括将光谱仪的视场划分为连续和平行的空间带,每个空间带都与两个相对的滑动金属条相关联,可以定位这些金属条来创建对一个天文物体进行光谱观测所需的狭缝。建造了新设计的CSU的三狭缝原型,并在环境和低温下进行了广泛的测试。CSU的性能符合规范要求。
{"title":"A compact cryogenic configurable slit unit for a multi-object infrared spectrograph: Design and Development of a prototype at TIFR","authors":"P. Madhwani, A. Kutty, B. Mookerjea, J. Parmar, V. Kurhade, S. D’costa, P. Manoj, A. Surya","doi":"10.1142/s2251171723500101","DOIUrl":"https://doi.org/10.1142/s2251171723500101","url":null,"abstract":"We present a cryogenic configurable slit unit (CSU) for a multi object infrared spectrograph with an effective field of view of 9.1 arcmin x 9.1 arcmin that was completely conceived and designed in the laboratory at TIFR. Several components of the CSU including the controller for the commercially procured piezo-walkers, controlled loop position sensing mechanism using digital slide callipers and a cryogenic test facility for the assembled prototype were also developed in-house. The principle of the CSU involves division of the field of view of the spectrometer into contiguous and parallel spatial bands, each one associated with two opposite sliding metal bars that can be positioned to create a slit needed to make spectroscopic observations of one astronomical object. A three-slit prototype of the newly designed CSU was built and tested extensively at ambient and cryogenic temperatures. The performance of the CSU was found to be as per specifications.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49188089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-26DOI: 10.1142/s225117172350006x
J. Bunton
A system, the synthesis convolver, is described that can process the output of an analysis filter bank and: • Reconstruct the analysis filter bank input signal, • Implement continuous convolution on the reconstructed signal, and • Resample the reconstructed signal to different sample rates. The synthesis convolver combines the capabilities of a synthesis filter bank and a continuous convolver. The synthesis convolver is based on earlier work but improves upon it, adding convolution and resampling. As well as reconstructing filterbank data, convolution allows dechirping of pulsar signals and resampling allows synthesized data to conform to the VLBI VDIF standard. The spectral overlap-add approach described, compared to earlier work, reduces errors and is more robust to channel gain errors. The system uses windows with smoothed or apodized edges, with the classical Tukey window being used previously. Here the Tukey window is generalized leading to a class of apodized windows. This class of windows is explored and one is found that is close to optimal in all conditions and can reduce errors by up to 40[Formula: see text]dB compared to an equivalent Tukey window. Achievable aliasing errors are lower than those of a standard polyphase synthesis filter bank. The synthesis convolver provides a high quality and versatile replacement for polyphase synthesis filter banks.
{"title":"The Synthesis Convolver","authors":"J. Bunton","doi":"10.1142/s225117172350006x","DOIUrl":"https://doi.org/10.1142/s225117172350006x","url":null,"abstract":"A system, the synthesis convolver, is described that can process the output of an analysis filter bank and: • Reconstruct the analysis filter bank input signal, • Implement continuous convolution on the reconstructed signal, and • Resample the reconstructed signal to different sample rates. The synthesis convolver combines the capabilities of a synthesis filter bank and a continuous convolver. The synthesis convolver is based on earlier work but improves upon it, adding convolution and resampling. As well as reconstructing filterbank data, convolution allows dechirping of pulsar signals and resampling allows synthesized data to conform to the VLBI VDIF standard. The spectral overlap-add approach described, compared to earlier work, reduces errors and is more robust to channel gain errors. The system uses windows with smoothed or apodized edges, with the classical Tukey window being used previously. Here the Tukey window is generalized leading to a class of apodized windows. This class of windows is explored and one is found that is close to optimal in all conditions and can reduce errors by up to 40[Formula: see text]dB compared to an equivalent Tukey window. Achievable aliasing errors are lower than those of a standard polyphase synthesis filter bank. The synthesis convolver provides a high quality and versatile replacement for polyphase synthesis filter banks.","PeriodicalId":45132,"journal":{"name":"Journal of Astronomical Instrumentation","volume":null,"pages":null},"PeriodicalIF":1.3,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47734401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}