Natural‐Language Processing (NLP) based feature extraction technique in Deep‐Learning model to predict the Blood‐Brain‐Barrier permeability of molecules

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2023-07-04 DOI:10.1002/minf.202200271
Ashok Kumar, Ravi Singh, Powsali Ghosh, Ankit Ganeshpurkar, *. Asha, Rayala Swetha, Ravi Singh, Dileep Kumar, Sudheer Kumar Singh
{"title":"Natural‐Language Processing (NLP) based feature extraction technique in Deep‐Learning model to predict the Blood‐Brain‐Barrier permeability of molecules","authors":"Ashok Kumar, Ravi Singh, Powsali Ghosh, Ankit Ganeshpurkar, *. Asha, Rayala Swetha, Ravi Singh, Dileep Kumar, Sudheer Kumar Singh","doi":"10.1002/minf.202200271","DOIUrl":null,"url":null,"abstract":"Blood‐Brain‐Barrier (BBB) permeability is one of the critical factors in the success and failure of CNS drug development. The most accurate method of measuring BBB permeability involves clinical experiments, which are labour‐intensive and time‐consuming. Thus, numerous efforts were made to use artificial intelligence (AI) to predict molecules′ BBB permeability. Most of the previous models are based on calculated descriptors and molecular fingerprints. In the present work, we have developed an NLP‐based feature extraction technique in Deep‐Learning models to predict BBB permeability. We have used the B3DB database and generated SELFIES to extract features from the molecules. We have employed word level and N‐gram tokenization to represent words into numeric vectors. The extracted features were fed into several Artificial Neural Network (ANN) and Bi‐directional Long Short‐Term Memory (LSTM) models. The model, ANN‐10 built using ANN and 6‐gram tokenization, performed best on the independent test set. The accuracy, precision, recall, F1, specificity and AUC of ROC scores were found to be 0.89, 0.91, 0.91, 0.91, 0.85 and 0.90. Thus, the developed model can be used for the early screening of CNS drugs.","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202200271","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Blood‐Brain‐Barrier (BBB) permeability is one of the critical factors in the success and failure of CNS drug development. The most accurate method of measuring BBB permeability involves clinical experiments, which are labour‐intensive and time‐consuming. Thus, numerous efforts were made to use artificial intelligence (AI) to predict molecules′ BBB permeability. Most of the previous models are based on calculated descriptors and molecular fingerprints. In the present work, we have developed an NLP‐based feature extraction technique in Deep‐Learning models to predict BBB permeability. We have used the B3DB database and generated SELFIES to extract features from the molecules. We have employed word level and N‐gram tokenization to represent words into numeric vectors. The extracted features were fed into several Artificial Neural Network (ANN) and Bi‐directional Long Short‐Term Memory (LSTM) models. The model, ANN‐10 built using ANN and 6‐gram tokenization, performed best on the independent test set. The accuracy, precision, recall, F1, specificity and AUC of ROC scores were found to be 0.89, 0.91, 0.91, 0.91, 0.85 and 0.90. Thus, the developed model can be used for the early screening of CNS drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自然语言处理(NLP)的特征提取技术在深度学习模型中预测分子的血脑屏障通透性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Extended Activity Cliffs-Driven Approaches on Data Splitting for the Study of Bioactivity Machine Learning Predictions. BIOMX-DB: A web application for the BIOFACQUIM natural product database. Chemoinformatics for corrosion science: Data-driven modeling of corrosion inhibition by organic molecules. My 50 Years with Chemoinformatics. Pathway-based prediction of the therapeutic effects and mode of action of custom-made multiherbal medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1