Hazlini Dzinun, Y. Ichikawa, Honda Mitsuhiro, Qiyan Zhang
{"title":"Efficient Immobilised TiO2 in Polyvinylidene fluoride (PVDF) Membrane for Photocatalytic Degradation of Methylene Blue","authors":"Hazlini Dzinun, Y. Ichikawa, Honda Mitsuhiro, Qiyan Zhang","doi":"10.22079/JMSR.2019.106656.1263","DOIUrl":null,"url":null,"abstract":"Immobilised titanium dioxide (TiO2) in membrane structures has recently become attractive. This is due to the elimination of the separation step after the process of photocatalytic degradation. The efficiency of the TiO2 surface area exposed to UV light as the main important parameter needs to be considered. The immobilisation of TiO2 nanoparticles in the polyvinylidene fluoride (PVDF) membrane structure with different particle sizes (6 nm and 30 nm) was prepared via various techniques including the tape casting and spin coating methods to study the distribution of TiO2 nanoparticles in the membrane structure. Besides, the effects of the spinning speed in spin coating methods on the membrane structure and photocatalytic performance were investigated. The morphological and physical characteristics were also explored by field emission scanning electron microscope (FESEM) energy dispersion of X-ray (EDX), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis. The prepared membranes were tested in a photocatalytic system using methylene blue (MB) as a model pollutant. The results showed that the immobilisation of TiO2 nanoparticles in membrane structure could enhance the rate of MB degradation. The aggregation of the 6 nm and 30 nm TiO2 particle sizes prepared by tape casting method shows similar performance in MB degradation rate but contradict the result of the spin coating method. The good distribution and uniformity of the 6 nm TiO2 particle size exhibit a higher MB degradation rate. The thickness of the membrane can be tailored using the spin coating method and UV penetration towards the photocatalytic membrane up to 55.64 μm of thickness, which could enhance the MB photocatalytic degradation rate.","PeriodicalId":16427,"journal":{"name":"Journal of Membrane Science and Research","volume":"6 1","pages":"188-195"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22079/JMSR.2019.106656.1263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 11
Abstract
Immobilised titanium dioxide (TiO2) in membrane structures has recently become attractive. This is due to the elimination of the separation step after the process of photocatalytic degradation. The efficiency of the TiO2 surface area exposed to UV light as the main important parameter needs to be considered. The immobilisation of TiO2 nanoparticles in the polyvinylidene fluoride (PVDF) membrane structure with different particle sizes (6 nm and 30 nm) was prepared via various techniques including the tape casting and spin coating methods to study the distribution of TiO2 nanoparticles in the membrane structure. Besides, the effects of the spinning speed in spin coating methods on the membrane structure and photocatalytic performance were investigated. The morphological and physical characteristics were also explored by field emission scanning electron microscope (FESEM) energy dispersion of X-ray (EDX), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis. The prepared membranes were tested in a photocatalytic system using methylene blue (MB) as a model pollutant. The results showed that the immobilisation of TiO2 nanoparticles in membrane structure could enhance the rate of MB degradation. The aggregation of the 6 nm and 30 nm TiO2 particle sizes prepared by tape casting method shows similar performance in MB degradation rate but contradict the result of the spin coating method. The good distribution and uniformity of the 6 nm TiO2 particle size exhibit a higher MB degradation rate. The thickness of the membrane can be tailored using the spin coating method and UV penetration towards the photocatalytic membrane up to 55.64 μm of thickness, which could enhance the MB photocatalytic degradation rate.
期刊介绍:
The Journal of Membrane Science and Research (JMSR) is an Open Access journal with Free of Charge publication policy, which provides a focal point for academic and industrial chemical and polymer engineers, chemists, materials scientists, and membranologists working on both membranes and membrane processes, particularly for four major sectors, including Energy, Water, Environment and Food. The journal publishes original research and reviews on membranes (organic, inorganic, liquid and etc.) and membrane processes (MF, UF, NF, RO, ED, Dialysis, MD, PV, CDI, FO, GP, VP and etc.), membrane formation/structure/performance, fouling, module/process design, and processes/applications in various areas. Primary emphasis is on structure, function, and performance of essentially non-biological membranes.