A technology of drinking water decontamination from radon and its decay products

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR Nukleonika Pub Date : 2020-05-29 DOI:10.2478/nuka-2020-0009
I. Voinov, V. P. Remez, A. A. Ioshin, V. Semenishchev, Dmitry A. Gorchakov
{"title":"A technology of drinking water decontamination from radon and its decay products","authors":"I. Voinov, V. P. Remez, A. A. Ioshin, V. Semenishchev, Dmitry A. Gorchakov","doi":"10.2478/nuka-2020-0009","DOIUrl":null,"url":null,"abstract":"Abstract Underground water is one of the main sources of radon for households. This article focuses on the estimation and removal of radon from underground water using the technology and inorganic sorbents developed by EKSORB Ltd., Russia for liquid radioactive waste treatment in the nuclear power industry. The article presents the results of tests of a system for the removal of radon and radon daughters from water patented by EKSORB. This is achieved by filtering water through RATZIR sorbent, followed by periodic load regeneration. Over a period of three years, the plant is successful in removing radon from the water that had an initial radon content of approximately 1500 Bq/L to less than 60 Bq/L, without releasing radon to indoor/outdoor air.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"65 1","pages":"67 - 70"},"PeriodicalIF":0.7000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2020-0009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Underground water is one of the main sources of radon for households. This article focuses on the estimation and removal of radon from underground water using the technology and inorganic sorbents developed by EKSORB Ltd., Russia for liquid radioactive waste treatment in the nuclear power industry. The article presents the results of tests of a system for the removal of radon and radon daughters from water patented by EKSORB. This is achieved by filtering water through RATZIR sorbent, followed by periodic load regeneration. Over a period of three years, the plant is successful in removing radon from the water that had an initial radon content of approximately 1500 Bq/L to less than 60 Bq/L, without releasing radon to indoor/outdoor air.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
饮用水氡及其衰变产物的净化技术
摘要地下水是家庭氡的主要来源之一。本文主要介绍了利用俄罗斯EKSORB有限公司开发的用于核电工业放射性液体废物处理的技术和无机吸附剂对地下水中氡的估计和去除。本文介绍了一种由EKSORB专利的用于去除水中氡和氡子体的系统的测试结果。这是通过RATZIR吸附剂过滤水,然后定期负荷再生来实现的。在三年的时间里,该工厂成功地从最初氡含量约为1500 Bq/L至低于60 Bq/L的水中去除氡,而没有将氡释放到室内/室外空气中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
期刊最新文献
Numerical studies of plasma edge in W7-X with 3D FINDIF code Photomultiplier tube signal conditioning for high-temperature applications Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation Mechanical design of the gamma blockers for the high-energy beam transport region of the European Spallation Source Radon exposure in kindergartens in one Bulgarian district
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1