Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR Nukleonika Pub Date : 2023-07-05 DOI:10.2478/nuka-2023-0009
Stephen O Kabasa, Yongxia Sun, A. Chmielewski, H. Nichipor
{"title":"Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation","authors":"Stephen O Kabasa, Yongxia Sun, A. Chmielewski, H. Nichipor","doi":"10.2478/nuka-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract Electron beam treatment technologies should be versatile in the removal of chlorofluorocarbons (CFCs) owing to their exceptional cross sections for the thermal electrons generated in the radiolysis of air. Humidity, dose rates, O2 concentration, and CFC concentration influence the efficiency of the destruction process under electron beam treatment. Computer simulations have been used to theoretically demonstrate the destruction of chlorotrifluoromethane (CF3Cl), dichlorodifluoromethane (CF2Cl2), and trichlorofluoromethane (CFCl3) in the air (N2 + O2: 80% + 20%) in room temperature up to a dose of 13 kGy. Under these conditions, it is predicted that the removal efficiency is in the order CF3Cl (0.1%) < CF2Cl2 (7%) < CFCl3 (34%), which shows the dependence of the process on the number of substituted Cl atoms. Dissociative electron attachment with the release of Cl– is the primary process initiating the destruction of CFCs from the air stream. Reactions with the first excited state of oxygen, namely, O(1D), and charge-transfer reactions further promote the degradation process. The degradation products can be further degraded to CO2, Cl2, and F2 by prolonged radiation treatment. Other predicted products can also be removed through chemical processes.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"68 1","pages":"67 - 76"},"PeriodicalIF":0.7000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2023-0009","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Electron beam treatment technologies should be versatile in the removal of chlorofluorocarbons (CFCs) owing to their exceptional cross sections for the thermal electrons generated in the radiolysis of air. Humidity, dose rates, O2 concentration, and CFC concentration influence the efficiency of the destruction process under electron beam treatment. Computer simulations have been used to theoretically demonstrate the destruction of chlorotrifluoromethane (CF3Cl), dichlorodifluoromethane (CF2Cl2), and trichlorofluoromethane (CFCl3) in the air (N2 + O2: 80% + 20%) in room temperature up to a dose of 13 kGy. Under these conditions, it is predicted that the removal efficiency is in the order CF3Cl (0.1%) < CF2Cl2 (7%) < CFCl3 (34%), which shows the dependence of the process on the number of substituted Cl atoms. Dissociative electron attachment with the release of Cl– is the primary process initiating the destruction of CFCs from the air stream. Reactions with the first excited state of oxygen, namely, O(1D), and charge-transfer reactions further promote the degradation process. The degradation products can be further degraded to CO2, Cl2, and F2 by prolonged radiation treatment. Other predicted products can also be removed through chemical processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电子束辐照下CF3Cl、CF2Cl2和CFCl3的计算机模拟降解
摘要电子束处理技术在去除氟氯化碳(CFCs)方面应该是通用的,因为它们对空气辐解过程中产生的热电子具有特殊的横截面。湿度、剂量率、O2浓度和CFC浓度影响电子束处理下破坏过程的效率。计算机模拟已用于从理论上证明在室温下,高达13kGy的剂量下,空气(N2+O2:80%+20%)中的三氟氯甲烷(CF3Cl)、二氯二氟甲烷(CF2Cl2)和三氟三甲烷(CFCl3)的破坏。在这些条件下,预测去除效率为CF3Cl(0.1%)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
期刊最新文献
Numerical studies of plasma edge in W7-X with 3D FINDIF code Photomultiplier tube signal conditioning for high-temperature applications Computer-simulated degradation of CF3Cl, CF2Cl2, and CFCl3 under electron beam irradiation Mechanical design of the gamma blockers for the high-energy beam transport region of the European Spallation Source Radon exposure in kindergartens in one Bulgarian district
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1