{"title":"A Dunite Fragment in Meteorite Northwest Africa (NWA) 11421: A Piece of the Moon’s Mantle","authors":"","doi":"10.2138/am-2022-8911","DOIUrl":null,"url":null,"abstract":"Abstract A centimeter-sized fragment of dunite, the first recognized fragment of Moon mantle material, has been discovered in the lunar highlands breccia meteorite Northwest Africa (NWA) 11421. The dunite consists of 95% olivine (Fo83), with low-Ca and high-Ca pyroxenes, plagioclase, and chrome spinel. Mineral compositions vary little across the clast and are consistent with chemical equilibration. Mineral thermobarometry implies that the dunite equilibrated at 980 ± 20 °C and 0.4 ± 0.1 gigapascal (GPa) pressure. The pressure at the base of the Moon’s crust (density 2550 kg/m3) is 0.14–0.18 GPa, so the dunite equilibrated well into the Moon’s upper mantle. Assuming a mantle density of 3400 kg/m3, the dunite equilibrated at a depth of 88 ± 22 km. Its temperature and depth of equilibration are consistent with the calculated present-day selenotherm (i.e., lunar geotherm). The dunite’s composition, calculated from mineral analyses and proportions, contains less Al, Ti, etc., than chondritic material, implying that it is of a differentiated mantle (including cumulates from a lunar magma ocean). The absence of phases containing P, Zr, etc., suggests minimal involvement of a KREEP component, and the low proportion of Ti suggests minimal interaction with late melt fractionates from a lunar magma ocean. The Mg/Fe ratio of the dunite (Fo83) is significantly lower than models of an overturned unmixed mantle would suggest, but is consistent with estimates of the bulk composition of the Moon’s mantle.","PeriodicalId":7768,"journal":{"name":"American Mineralogist","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mineralogist","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/am-2022-8911","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract A centimeter-sized fragment of dunite, the first recognized fragment of Moon mantle material, has been discovered in the lunar highlands breccia meteorite Northwest Africa (NWA) 11421. The dunite consists of 95% olivine (Fo83), with low-Ca and high-Ca pyroxenes, plagioclase, and chrome spinel. Mineral compositions vary little across the clast and are consistent with chemical equilibration. Mineral thermobarometry implies that the dunite equilibrated at 980 ± 20 °C and 0.4 ± 0.1 gigapascal (GPa) pressure. The pressure at the base of the Moon’s crust (density 2550 kg/m3) is 0.14–0.18 GPa, so the dunite equilibrated well into the Moon’s upper mantle. Assuming a mantle density of 3400 kg/m3, the dunite equilibrated at a depth of 88 ± 22 km. Its temperature and depth of equilibration are consistent with the calculated present-day selenotherm (i.e., lunar geotherm). The dunite’s composition, calculated from mineral analyses and proportions, contains less Al, Ti, etc., than chondritic material, implying that it is of a differentiated mantle (including cumulates from a lunar magma ocean). The absence of phases containing P, Zr, etc., suggests minimal involvement of a KREEP component, and the low proportion of Ti suggests minimal interaction with late melt fractionates from a lunar magma ocean. The Mg/Fe ratio of the dunite (Fo83) is significantly lower than models of an overturned unmixed mantle would suggest, but is consistent with estimates of the bulk composition of the Moon’s mantle.
期刊介绍:
American Mineralogist: Journal of Earth and Planetary Materials (Am Min), is the flagship journal of the Mineralogical Society of America (MSA), continuously published since 1916. Am Min is home to some of the most important advances in the Earth Sciences. Our mission is a continuance of this heritage: to provide readers with reports on original scientific research, both fundamental and applied, with far reaching implications and far ranging appeal. Topics of interest cover all aspects of planetary evolution, and biological and atmospheric processes mediated by solid-state phenomena. These include, but are not limited to, mineralogy and crystallography, high- and low-temperature geochemistry, petrology, geofluids, bio-geochemistry, bio-mineralogy, synthetic materials of relevance to the Earth and planetary sciences, and breakthroughs in analytical methods of any of the aforementioned.