Advantage of Alginate Bioinks in Biofabrication for Various Tissue Engineering Applications

IF 3.4 4区 化学 Q2 POLYMER SCIENCE International Journal of Polymer Science Pub Date : 2023-06-07 DOI:10.1155/2023/6661452
S. Datta
{"title":"Advantage of Alginate Bioinks in Biofabrication for Various Tissue Engineering Applications","authors":"S. Datta","doi":"10.1155/2023/6661452","DOIUrl":null,"url":null,"abstract":"Bioprinting is fast emerging as a viable technique for organ fabrication. Though various types of bioprinting methods have been developed, the most commonly used bioprinting is extrusion-based bioprinting (EBB). Bioinks are extruded layer-by-layer forming a 3D multicellular construct and scaled up to dimensions depending upon the specific tissue to be regenerated. Among various bioinks, alginate, a natural polysaccharide, has been extensively used because of its good printability in physiologically amenable conditions. Though alginate possesses good printability properties, it promotes little cell–material interaction resulting in limited biofunctionality. Therefore, it becomes necessary to blend/modify alginate to improve the biological properties of bioink without compromising printability. This paper presents a review of the various approaches used to optimize bioprinting with alginate bioinks and their limitations.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/6661452","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 1

Abstract

Bioprinting is fast emerging as a viable technique for organ fabrication. Though various types of bioprinting methods have been developed, the most commonly used bioprinting is extrusion-based bioprinting (EBB). Bioinks are extruded layer-by-layer forming a 3D multicellular construct and scaled up to dimensions depending upon the specific tissue to be regenerated. Among various bioinks, alginate, a natural polysaccharide, has been extensively used because of its good printability in physiologically amenable conditions. Though alginate possesses good printability properties, it promotes little cell–material interaction resulting in limited biofunctionality. Therefore, it becomes necessary to blend/modify alginate to improve the biological properties of bioink without compromising printability. This paper presents a review of the various approaches used to optimize bioprinting with alginate bioinks and their limitations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海藻酸生物墨水在生物制造中的优势,可用于各种组织工程应用
生物打印作为一种可行的器官制造技术正在迅速兴起。尽管已经开发出了各种类型的生物打印方法,但最常用的生物打印是基于挤出的生物打印(EBB)。生物墨水被逐层挤出,形成3D多细胞结构,并根据要再生的特定组织按比例放大。在各种生物墨水中,海藻酸盐是一种天然多糖,由于其在生理条件下具有良好的印刷性而被广泛使用。尽管藻酸盐具有良好的可印刷性,但它很少促进细胞与材料的相互作用,导致生物功能有限。因此,有必要在不影响印刷性的情况下共混/改性藻酸盐以提高生物墨水的生物性能。本文综述了用藻酸盐生物墨水优化生物打印的各种方法及其局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
期刊最新文献
Characterisation of Luffa cylindrica Fibre from Cameroon for Use in Composites: Effect of Alkaline Treatment Experimental Investigation on the 3D Printing of Nylon Reinforced by Carbon Fiber through Fused Filament Fabrication Process, Effects of Extruder Temperature, and Printing Speed Fracture Resistance of Endodontically Treated Teeth Restored Using Multifiber Posts Compared with Single Fiber Posts Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films Thermal and Mechanical Performance of 3-Phase Polymer Composite Panels for Structural Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1