Electrophysiological Recordings from Embryonic Mouse Motoneurons Cultured on Electrospun Poly-Lactic Acid (PLA) and Polypyrrole-Coated PLA Scaffolds

Q2 Biochemistry, Genetics and Molecular Biology Iranian Biomedical Journal Pub Date : 2022-04-03 DOI:10.52547/ibj.26.3.183
Esmeralda Zuñiga, Odin Ramírez, Carlos Martínez
{"title":"Electrophysiological Recordings from Embryonic Mouse Motoneurons Cultured on Electrospun Poly-Lactic Acid (PLA) and Polypyrrole-Coated PLA Scaffolds","authors":"Esmeralda Zuñiga, Odin Ramírez, Carlos Martínez","doi":"10.52547/ibj.26.3.183","DOIUrl":null,"url":null,"abstract":"Background: Biomaterials used as cell growth stimulants should be able to provide adequate cell adhesion with no alteration in cell function. In this work, we developed a 3D model of mouse spinal cord motoneurons on scaffolds composed of electrospun PLA fibers and plasma-polymerized PPy-coated PLA fibers. Methods: The functionality of the cultured motoneurons was assessed by evaluating both the electrophysiological response (i.e., the whole-cell Na+ and K+ currents and the firing of action potentials) and also the expression of the VAChaT by immunostaining techniques. While the expression of the VAChaT was confirmed on motoneurons cultured on the fibrous scaffolds, the electrophysiological responses indicated Na+ and K+ currents with lower amplitude and slower action potentials when compared to the response recorded from spinal cord motoneurons cultured on Poly-DL-Ornithine/Laminin- and plasma-polymerized PPy-coated coverslips. Results: From a morphological viewpoint, motoneurons cultured on PLA and PPy-coated PLA scaffolds did not show the development of dendritic and/or axonal processes, which were satisfactorily observed in the bidimensional cultures. Conclusion: We hypothesize that the apparently limited development of dendritic and/or axonal processes could produce a deleterious effect on the electrophysiological response of the cells, which might be due to the limited growth surface available in the fibrous scaffolds and/or to an undesired effect of the purification process.","PeriodicalId":14500,"journal":{"name":"Iranian Biomedical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Biomedical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ibj.26.3.183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Biomaterials used as cell growth stimulants should be able to provide adequate cell adhesion with no alteration in cell function. In this work, we developed a 3D model of mouse spinal cord motoneurons on scaffolds composed of electrospun PLA fibers and plasma-polymerized PPy-coated PLA fibers. Methods: The functionality of the cultured motoneurons was assessed by evaluating both the electrophysiological response (i.e., the whole-cell Na+ and K+ currents and the firing of action potentials) and also the expression of the VAChaT by immunostaining techniques. While the expression of the VAChaT was confirmed on motoneurons cultured on the fibrous scaffolds, the electrophysiological responses indicated Na+ and K+ currents with lower amplitude and slower action potentials when compared to the response recorded from spinal cord motoneurons cultured on Poly-DL-Ornithine/Laminin- and plasma-polymerized PPy-coated coverslips. Results: From a morphological viewpoint, motoneurons cultured on PLA and PPy-coated PLA scaffolds did not show the development of dendritic and/or axonal processes, which were satisfactorily observed in the bidimensional cultures. Conclusion: We hypothesize that the apparently limited development of dendritic and/or axonal processes could produce a deleterious effect on the electrophysiological response of the cells, which might be due to the limited growth surface available in the fibrous scaffolds and/or to an undesired effect of the purification process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乳酸(PLA)和聚吡咯包被PLA支架培养小鼠胚胎运动神经元的电生理记录
背景:用作细胞生长刺激剂的生物材料应该能够在不改变细胞功能的情况下提供足够的细胞粘附。在这项工作中,我们在由电纺PLA纤维和等离子体聚合PPy涂层PLA纤维组成的支架上开发了小鼠脊髓运动神经元的3D模型。方法:通过免疫染色技术评估电生理反应(即全细胞Na+和K+电流以及动作电位的激发)和VAChaT的表达来评估培养的运动神经元的功能。虽然VAChaT在纤维支架上培养的运动神经元上的表达得到了证实,但与在聚DL-鸟氨酸/层粘连蛋白和血浆聚合PPy涂层盖玻片上培养的脊髓运动神经元记录的反应相比,电生理反应显示Na+和K+电流具有较低的振幅和较慢的动作电位。结果:从形态学角度来看,在PLA和PPy涂层的PLA支架上培养的运动神经元没有显示出树突和/或轴突突起的发育,这在二维培养中得到了令人满意的观察。结论:我们假设树突和/或轴突突起明显有限的发育可能会对细胞的电生理反应产生有害影响,这可能是由于纤维支架中可用的生长表面有限和/或纯化过程的不良影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Biomedical Journal
Iranian Biomedical Journal Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.20
自引率
0.00%
发文量
42
审稿时长
8 weeks
期刊最新文献
Deciphering Molecular Mechanisms of Cutaneous Leishmaniasis, Pathogenesis and Drug Repurposing through Systems Biology. Tryptophan and Its Derived Metabolites as Biomarkers for Tuberculosis Disease: A Systematic Review. In silico and in vivo Investigations of the Immunoreactivity of Klebsiella pneumoniae OmpA Protein as a Vaccine Candidate. Stability of Neutralizing Antibody of PastoCoAd Vaccine Candidates against a Variant of Concern of SARS-CoV-2 in Animal Models. Polyethylene Glycol -Mediated Exosome Isolation: A Method for Exosomal RNA Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1