Assessment of gold with titanium alloy weldability in conditions of a dental technique laboratory

G. Jania, J. Żmudzki, S. Topolska
{"title":"Assessment of gold with titanium alloy weldability in conditions of a dental technique laboratory","authors":"G. Jania, J. Żmudzki, S. Topolska","doi":"10.5604/01.3001.0016.2451","DOIUrl":null,"url":null,"abstract":"In dental practice, there is necessary to weld gold with titanium under the conditions of a dental technique laboratory, which is difficult. The aim was to assess the weldability of pure gold with the titanium alloy Ti6Al4V using a prosthetic laser welding machine.Gold wire in a diameter of 0.4 mm made with the use of a jewellery drawbar (GOLDPORT, Szczecin, Poland) was welded to a titanium alloy Ti6Al4V substrate of dental implant abutment screw (MegaGen). Dental laser welding parameters (Bego Laser Star T plus) were 230 V; 6.5 ms; 2.5 Hz; laser spot 0.3 mm, and argon blow. Samples were included in resin, ground (500-4000 SiC), polished (Al2O3 suspension) and etched (Kroll solution) per 20 s before observation under a light microscope.There were well-welded and poorly joined zones. The discontinuities and voids there were not visible or sparse next to the initial weld point. Dendritic structure at well-welded remelting zones and two-phase microstructure of titanium and Ti3Au phase were found. The heat-affected zone was about of 20 microns.Light microscopy was used, and precise phase identification required further investigations. Weld strength assessment requires further micro-hardness and load-bearing ability tests. Weldability concerns the model system with pure gold.In the case of elements with dimensions below 0.4 mm, the use of a laser with a smaller spot should be considered for better control of the remelting zone and mechanical positioning of the elements in order to stabilize and avoid discontinuities and voids.Prosthetic laser welding with a laser spot about of 0.3 mm allows to obtain well-welded parts of 0.3 mm in diameter under stable stitching conditions and higher than 0.4 mm in dimensions.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of materials science and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0016.2451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

In dental practice, there is necessary to weld gold with titanium under the conditions of a dental technique laboratory, which is difficult. The aim was to assess the weldability of pure gold with the titanium alloy Ti6Al4V using a prosthetic laser welding machine.Gold wire in a diameter of 0.4 mm made with the use of a jewellery drawbar (GOLDPORT, Szczecin, Poland) was welded to a titanium alloy Ti6Al4V substrate of dental implant abutment screw (MegaGen). Dental laser welding parameters (Bego Laser Star T plus) were 230 V; 6.5 ms; 2.5 Hz; laser spot 0.3 mm, and argon blow. Samples were included in resin, ground (500-4000 SiC), polished (Al2O3 suspension) and etched (Kroll solution) per 20 s before observation under a light microscope.There were well-welded and poorly joined zones. The discontinuities and voids there were not visible or sparse next to the initial weld point. Dendritic structure at well-welded remelting zones and two-phase microstructure of titanium and Ti3Au phase were found. The heat-affected zone was about of 20 microns.Light microscopy was used, and precise phase identification required further investigations. Weld strength assessment requires further micro-hardness and load-bearing ability tests. Weldability concerns the model system with pure gold.In the case of elements with dimensions below 0.4 mm, the use of a laser with a smaller spot should be considered for better control of the remelting zone and mechanical positioning of the elements in order to stabilize and avoid discontinuities and voids.Prosthetic laser welding with a laser spot about of 0.3 mm allows to obtain well-welded parts of 0.3 mm in diameter under stable stitching conditions and higher than 0.4 mm in dimensions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牙科技术实验室条件下金与钛合金可焊性的评定
在牙科实践中,有必要在牙科技术实验室的条件下将金与钛焊接,这是困难的。目的是利用假肢激光焊接机评估纯金与钛合金Ti6Al4V的可焊性。使用珠宝拉杆(GOLDPORT, Szczecin, Poland)制作直径为0.4 mm的金丝,焊接到种植牙基牙螺钉(MegaGen)的钛合金Ti6Al4V基板上。牙科激光焊接参数(Bego laser Star T plus)为230 V;6.5女士;2.5赫兹;激光光斑0.3 mm,氩气吹制。样品每20 s放入树脂中,研磨(500-4000 SiC),抛光(Al2O3悬浮液)和蚀刻(Kroll溶液),然后在光学显微镜下观察。有焊接良好和连接不良的区域。在初始焊点附近,不可见或稀疏的不连续和空洞。在焊接良好的重熔区发现了枝晶组织和钛与Ti3Au相的两相组织。热影响区约为20微米。使用光学显微镜,精确的相识别需要进一步的研究。焊接强度评估需要进一步的显微硬度和承载能力测试。可焊性与纯金的模型系统有关。对于尺寸小于0.4 mm的元件,应考虑使用光斑较小的激光,以便更好地控制重熔区域和元件的机械定位,以稳定和避免不连续和空洞。激光光斑约为0.3 mm的假肢激光焊接可以在稳定的拼接条件下获得直径0.3 mm且尺寸大于0.4 mm的焊接良好的零件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Archives of materials science and engineering
Archives of materials science and engineering Materials Science-Materials Science (all)
CiteScore
2.90
自引率
0.00%
发文量
15
期刊最新文献
Heat transfer improvement using additive manufacturing technologies: a review Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass Details Matter in Structure-based Drug Design. Investigation of the effect of polymer concentration in fracturing fluid on crack size and permeability during hydraulic fracturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1