Pub Date : 2023-09-01DOI: 10.5604/01.3001.0053.9750
J. Piątkowski, M. Hejne, R. Wieszała
This paper was to determine the effect of different manganese addition contents from 0.2 to 1.0 wt.% on the microstructure, HB hardness and selected mechanical properties (UTS; YS; EL) of AlSi10MnMg alloy with increased iron content (about 1.0 wt.%). The proportion of iron in the studied alloy is so high because approx. 50% of the charge came from secondary materials.Chemical composition tests were performed using a Foundry Master Compact 8 emission spectrometer. Static tensile testing at ambient temperature was carried out according to PN-EN ISO 6892-1 on an Instron 3382 using a 20:1 ratio and a constant tensile speed of 5 mm/min-1. Tensile strength (UTS), conventional yield strength (YS), and per cent elongation after rupture of a proportional sample (EL) were determined from this test. Brinell hardness measurement was performed on a Zwick ZHF1, with a loading force of 250 N, with a 5 mm diameter ball for 35 s. Ten measurements were taken, discarding the two outliers, and the arithmetic mean was calculated from the remaining measurements. Metallographic studies were conducted on a MeF-2 Reichert light microscope. X-ray microanalysis studies were carried out on a Hitachi S-3400 scanning microscope coupled to an EDS Voyager X-ray spectrometer equipped with an SE secondary and BSE backscattered electron detector. Chemical composition analysis was performed by energy dispersive X-ray microanalysis (EDS) using a Thermo Noran detector.Increased iron content in aluminium-silicon alloys is a major concern. It causes a significant reduction in the mechanical properties of the materials. This is due, among other things, to the increasing scarcity of primary materials (high cost and environmentally unjustifiable) versus the increasing share of recycled materials. Based on the study, AlSi10MnMg(Fe) alloys obtained under pressure with higher iron content (about 1% wt.), the optimal value of manganese addition is about 0.58% wt.This research has shown that it is possible to use recycled Al-Si materials. The article presents one way to reduce the negative impact of iron addition to aluminium alloys as a result of reusing this type of material.The article presents the effect of manganese addition on the selected aluminium alloy. It was determined that the addition of manganese in the amount of 0.58% wt. causes a significant reduction in the negative effect of iron phases. The article is intended not only for the academic community but also for specialists in the foundry industry.
{"title":"Influence of manganese content on the microstructure and properties of AlSi10MnMg(Fe) alloy for die castings","authors":"J. Piątkowski, M. Hejne, R. Wieszała","doi":"10.5604/01.3001.0053.9750","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9750","url":null,"abstract":"This paper was to determine the effect of different manganese addition contents from 0.2 to 1.0 wt.% on the microstructure, HB hardness and selected mechanical properties (UTS; YS; EL) of AlSi10MnMg alloy with increased iron content (about 1.0 wt.%). The proportion of iron in the studied alloy is so high because approx. 50% of the charge came from secondary materials.Chemical composition tests were performed using a Foundry Master Compact 8 emission spectrometer. Static tensile testing at ambient temperature was carried out according to PN-EN ISO 6892-1 on an Instron 3382 using a 20:1 ratio and a constant tensile speed of 5 mm/min-1. Tensile strength (UTS), conventional yield strength (YS), and per cent elongation after rupture of a proportional sample (EL) were determined from this test. Brinell hardness measurement was performed on a Zwick ZHF1, with a loading force of 250 N, with a 5 mm diameter ball for 35 s. Ten measurements were taken, discarding the two outliers, and the arithmetic mean was calculated from the remaining measurements. Metallographic studies were conducted on a MeF-2 Reichert light microscope. X-ray microanalysis studies were carried out on a Hitachi S-3400 scanning microscope coupled to an EDS Voyager X-ray spectrometer equipped with an SE secondary and BSE backscattered electron detector. Chemical composition analysis was performed by energy dispersive X-ray microanalysis (EDS) using a Thermo Noran detector.Increased iron content in aluminium-silicon alloys is a major concern. It causes a significant reduction in the mechanical properties of the materials. This is due, among other things, to the increasing scarcity of primary materials (high cost and environmentally unjustifiable) versus the increasing share of recycled materials. Based on the study, AlSi10MnMg(Fe) alloys obtained under pressure with higher iron content (about 1% wt.), the optimal value of manganese addition is about 0.58% wt.This research has shown that it is possible to use recycled Al-Si materials. The article presents one way to reduce the negative impact of iron addition to aluminium alloys as a result of reusing this type of material.The article presents the effect of manganese addition on the selected aluminium alloy. It was determined that the addition of manganese in the amount of 0.58% wt. causes a significant reduction in the negative effect of iron phases. The article is intended not only for the academic community but also for specialists in the foundry industry.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"376 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135782383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.5604/01.3001.0053.9781
J. Byiringiro, M. Chaanaoui, M. Halimi, S. Vaudreuil
To provide a comprehensive review of additive manufacturing use in heat transfer improvement and to carry out the economic feasibility of additive manufacturing compared to conventional manufacturing. Heat transfer improvement is particularly interesting for different industrial sectors due to its economic, practical, and environmental benefits. Three heat transfer improvement techniques are used: active, passive, and compound.According to numerous studies on heat transfer enhancement devices, most configurations with strong heat transfer performance are geometrically complex. Thus, those configurations cannot be easily manufactured using conventional manufacturing. With additive manufacturing, almost any configuration can be manufactured, with the added benefit that the produced parts’ surface characteristics can enhance heat transfer. It can, however, lead to a significant pressure drop increase that will reduce the overall performance. In the given article, a comparison of the capital cost of a 100 MW parabolic trough power plant has been carried out, considering two types of solar receivers; the first is manufactured using conventional methods, and the second uses additive manufacturing. The heat transfer of the new receiver configuration is investigated using computational fluid dynamics through ANYS Fluent.Although the cost of additive manufacturing machines and materials is high compared to conventional manufacturing, the outcome revealed that the gain in efficiency when using additive-manufactured receivers leads to a reduction in the number of receiver tubes and the number of solar collectors needed in the solar field It implies a considerable reduction of parabolic trough collector plant capital cost, which is 20.7%. It can, therefore, be concluded that, even if initial setup expenses are higher, additive manufacturing could be more cost-effective than traditional manufacturing.With the reduction of the parabolic trough collector plant capital cost, the levelized cost of electricity will eventually be reduced, which will play a role in increasing the use of solar thermal energy.No review studies discuss the manufacturing potential and cost-effectiveness potential of additive manufacturing when producing heat transfer improvement equipment, especially when producing long pieces. In addition, the paper uses a novel receiver configuration to investigate the economic aspect.
{"title":"Heat transfer improvement using additive manufacturing technologies: a review","authors":"J. Byiringiro, M. Chaanaoui, M. Halimi, S. Vaudreuil","doi":"10.5604/01.3001.0053.9781","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9781","url":null,"abstract":"To provide a comprehensive review of additive manufacturing use in heat transfer improvement and to carry out the economic feasibility of additive manufacturing compared to conventional manufacturing. Heat transfer improvement is particularly interesting for different industrial sectors due to its economic, practical, and environmental benefits. Three heat transfer improvement techniques are used: active, passive, and compound.According to numerous studies on heat transfer enhancement devices, most configurations with strong heat transfer performance are geometrically complex. Thus, those configurations cannot be easily manufactured using conventional manufacturing. With additive manufacturing, almost any configuration can be manufactured, with the added benefit that the produced parts’ surface characteristics can enhance heat transfer. It can, however, lead to a significant pressure drop increase that will reduce the overall performance. In the given article, a comparison of the capital cost of a 100 MW parabolic trough power plant has been carried out, considering two types of solar receivers; the first is manufactured using conventional methods, and the second uses additive manufacturing. The heat transfer of the new receiver configuration is investigated using computational fluid dynamics through ANYS Fluent.Although the cost of additive manufacturing machines and materials is high compared to conventional manufacturing, the outcome revealed that the gain in efficiency when using additive-manufactured receivers leads to a reduction in the number of receiver tubes and the number of solar collectors needed in the solar field It implies a considerable reduction of parabolic trough collector plant capital cost, which is 20.7%. It can, therefore, be concluded that, even if initial setup expenses are higher, additive manufacturing could be more cost-effective than traditional manufacturing.With the reduction of the parabolic trough collector plant capital cost, the levelized cost of electricity will eventually be reduced, which will play a role in increasing the use of solar thermal energy.No review studies discuss the manufacturing potential and cost-effectiveness potential of additive manufacturing when producing heat transfer improvement equipment, especially when producing long pieces. In addition, the paper uses a novel receiver configuration to investigate the economic aspect.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135782382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.5604/01.3001.0053.9754
A.M. Mohaisen, T.J. Ntayeesh
The feasibility of harvesting electrical energy from mechanical vibration is demonstrated in the thesis. In the technique, energy is harvested from simply supported beam vibration under a moving mass using a thin piezoelectric material.The structure is represented by a basic beam of length L that is supported at both ends and traversed by a moving mass M travelling at a constant velocity v. The Euler-Bernoulli differential equation describes its behaviour. The dynamic analysis of a beam is performed by using three moving masses of (35.61, 65.81, and 79.41) gr each travelling three uniform speeds of (1.6, 2 and 2.4) m/s. A differential equation of the electromechanical system is obtained by transforming the piezoelectric constitutive equation and solved numerically by MATLAB.The results indicate that the numerical and experimental values for the midpoint deflection of the beam and the piezoelectric voltage are very close.Using the COMSOL programme, the proposed approach is checked by comparing results with data obtained by the finite element method (FEM). An experimental setup was also built and constructed to determine the voltage created by the piezoelectric patch and the beam response as a result of the mass travelling along the beam.The results show that the dynamic deflection, piezoelectric voltage, and piezoelectric energy harvesting all increase as the speed and magnitude of the moving mass increase. The harvesting power vs. load resistance curve begins at zero, increases to a maximum value, and then remains almost constant as the resistance is increased further. The optimal length of the piezoelectric patch was obtained to be 0.63 m. When the length of the beam increases, the resonant frequency decreases, and at the same time the harvested energy increases. However, increasing the beam thickness has the opposite effect; whereas raising the beam width does not affect the resonant frequency but decreases energy harvesting.The most essential point here is the need to have correctly built scale models. They can provide a substantial amount of information at a low cost, accommodate a variety of test settings, and aid in the selection and verification of the most effective analytical model to resolve the actual issue.
{"title":"An experimental and theoretical piezoelectric energy harvesting from a simply supported beam with moving mass","authors":"A.M. Mohaisen, T.J. Ntayeesh","doi":"10.5604/01.3001.0053.9754","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9754","url":null,"abstract":"The feasibility of harvesting electrical energy from mechanical vibration is demonstrated in the thesis. In the technique, energy is harvested from simply supported beam vibration under a moving mass using a thin piezoelectric material.The structure is represented by a basic beam of length L that is supported at both ends and traversed by a moving mass M travelling at a constant velocity v. The Euler-Bernoulli differential equation describes its behaviour. The dynamic analysis of a beam is performed by using three moving masses of (35.61, 65.81, and 79.41) gr each travelling three uniform speeds of (1.6, 2 and 2.4) m/s. A differential equation of the electromechanical system is obtained by transforming the piezoelectric constitutive equation and solved numerically by MATLAB.The results indicate that the numerical and experimental values for the midpoint deflection of the beam and the piezoelectric voltage are very close.Using the COMSOL programme, the proposed approach is checked by comparing results with data obtained by the finite element method (FEM). An experimental setup was also built and constructed to determine the voltage created by the piezoelectric patch and the beam response as a result of the mass travelling along the beam.The results show that the dynamic deflection, piezoelectric voltage, and piezoelectric energy harvesting all increase as the speed and magnitude of the moving mass increase. The harvesting power vs. load resistance curve begins at zero, increases to a maximum value, and then remains almost constant as the resistance is increased further. The optimal length of the piezoelectric patch was obtained to be 0.63 m. When the length of the beam increases, the resonant frequency decreases, and at the same time the harvested energy increases. However, increasing the beam thickness has the opposite effect; whereas raising the beam width does not affect the resonant frequency but decreases energy harvesting.The most essential point here is the need to have correctly built scale models. They can provide a substantial amount of information at a low cost, accommodate a variety of test settings, and aid in the selection and verification of the most effective analytical model to resolve the actual issue.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"88 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135782384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bernd Kuhn, Jens-Uwe Peters, Markus G Rudolph, Peter Mohr, Martin Stahl, Andreas Tosstorff
Successful structure-based drug design (SBDD) requires the optimization of interactions with the target protein and the minimization of ligand strain. Both factors are often modulated by small changes in the chemical structure which can lead to profound changes in the preferred conformation and interaction preferences of the ligand. We draw from examples of a Roche project targeting phosphodiesterase 10 to highlight that details matter in SBDD. Data mining in crystal structure databases can help to identify these sometimes subtle effects, but it is also a great resource to learn about molecular recognition in general and can be used as part of molecular design tools. We illustrate the use of the Cambridge Structural Database for identifying preferred structural motifs for intramolecular hydrogen bonding and of the Protein Data Bank for deriving propensities for protein-ligand interactions.
{"title":"Details Matter in Structure-based Drug Design.","authors":"Bernd Kuhn, Jens-Uwe Peters, Markus G Rudolph, Peter Mohr, Martin Stahl, Andreas Tosstorff","doi":"10.2533/chimia.2023.489","DOIUrl":"10.2533/chimia.2023.489","url":null,"abstract":"<p><p>Successful structure-based drug design (SBDD) requires the optimization of interactions with the target protein and the minimization of ligand strain. Both factors are often modulated by small changes in the chemical structure which can lead to profound changes in the preferred conformation and interaction preferences of the ligand. We draw from examples of a Roche project targeting phosphodiesterase 10 to highlight that details matter in SBDD. Data mining in crystal structure databases can help to identify these sometimes subtle effects, but it is also a great resource to learn about molecular recognition in general and can be used as part of molecular design tools. We illustrate the use of the Cambridge Structural Database for identifying preferred structural motifs for intramolecular hydrogen bonding and of the Protein Data Bank for deriving propensities for protein-ligand interactions.</p>","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"89 1","pages":"489-493"},"PeriodicalIF":1.2,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73864819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.5604/01.3001.0053.9594
L.B. Moroz, A.V. Uhrynovskyi, G.M. Kogut
This article aims to investigate the impact of polymer type and concentration in the fracturing fluid on the size and permeability of fractures during hydraulic fracturing. The aim is to predict the conductivity and productivity of the formed fractures in order to evaluate the cumulative gas production.The influence of polymer concentration in the fracturing fluid on the size and permeability of fractures was studied using the GOHFER software from Haliburton.The results of the study show that by combining the effect of increasing fracture size and decreasing the permeability of the proppant, a gas flow rate increase of 3.5 times was achieved.High polymer concentrations lead to reduced permeability due to the accumulation of polymer residues and polymer skin.The conducted study on the impact of polymer concentration in the fracturing fluid on the size and permeability of fractures will allow for a more qualitative hydraulic fracturing process.This article presents how the concentration and type of polymer affect the width, thickness, length, and conductivity of fractures during hydraulic fracturing.
{"title":"Investigation of the effect of polymer concentration in fracturing fluid on crack size and permeability during hydraulic fracturing","authors":"L.B. Moroz, A.V. Uhrynovskyi, G.M. Kogut","doi":"10.5604/01.3001.0053.9594","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9594","url":null,"abstract":"This article aims to investigate the impact of polymer type and concentration in the fracturing fluid on the size and permeability of fractures during hydraulic fracturing. The aim is to predict the conductivity and productivity of the formed fractures in order to evaluate the cumulative gas production.The influence of polymer concentration in the fracturing fluid on the size and permeability of fractures was studied using the GOHFER software from Haliburton.The results of the study show that by combining the effect of increasing fracture size and decreasing the permeability of the proppant, a gas flow rate increase of 3.5 times was achieved.High polymer concentrations lead to reduced permeability due to the accumulation of polymer residues and polymer skin.The conducted study on the impact of polymer concentration in the fracturing fluid on the size and permeability of fractures will allow for a more qualitative hydraulic fracturing process.This article presents how the concentration and type of polymer affect the width, thickness, length, and conductivity of fractures during hydraulic fracturing.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"93 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.5604/01.3001.0053.9595
O. Aourik, M. Othmani, A. Chouaf
The FDM (Fused Deposition Modelling) additive manufacturing process is characterised by a large number of process variables that determine the mechanical properties and quality of the manufactured parts. When printing layer by layer, the filaments constituting the layer are welded on the one hand between them in the same layer and on the other hand between the superimposed layers, this welding develops on the contact surfaces (raster width) along the deposited filaments. The quality of this welding determines the resistance to crack propagation between filaments and between layers. This article aims to study the effect of the width of the raster on the resistance to crack propagation in a structure obtained by FDM.We have developed an experimental approach from CT specimens to determine the tensile strength of polylactic acid (PLA) polymers, considering the J-Integral method. And given the complexity of the problem, three cases of raster width (l=0.42 mm, l=0.56 mm and l=0.68 mm) have been treated.According to the results obtained (J, ∆a), the resistance to crack propagation in the parts printed by FDM seems to be better when the width of the filament is small. Indeed, the energy necessary to break the specimen is relatively greater than in the case of a larger width. This finding was confirmed by comparing the values of J for a given advancement of the crack for the three cases studied.In order to present an exhaustive study, we focused on the effect of raster widths (including 0.42 mm, 0.56 mm to 0.68 mm) on the crack propagation of printed PLA. This study is in progress for other printing parameters. To highlight the cracking mechanisms, microscopic observations will be developed in greater depth at the SEM.Our analysis can be used as decision support in the design of FDM parts. In effect, we can choose the raster width that would provide the resistance to crack propagation desired for a functional part.In this article, we analysed the damage mechanism of CT specimens printed by FDM. This subject represents a new direction for many lines of research. For our study, we used the J-Integral theoretical approach to study the fracture behaviour of these parts by determining the resistance curves (J-∆a).
FDM(熔融沉积建模)增材制造工艺的特点是大量的工艺变量,这些变量决定了制造零件的机械性能和质量。当逐层打印时,构成层的细丝一方面在同一层中的细丝之间焊接,另一方面在重叠层之间焊接,这种焊接沿着沉积细丝的接触面(光栅宽度)进行。这种焊接的质量决定了丝与丝之间和层与层之间抗裂纹扩展的能力。本文旨在研究光栅宽度对FDM结构抗裂纹扩展性能的影响。我们已经开发了一种实验方法,从CT样品来确定聚乳酸(PLA)聚合物的抗拉强度,考虑到j积分法。考虑到问题的复杂性,我们对栅格宽度(l=0.42 mm, l=0.56 mm和l=0.68 mm)的三种情况进行了处理。由所得结果(J,∆a)可知,当线材宽度较小时,FDM打印的零件抗裂纹扩展能力较好。实际上,打破试样所需的能量相对于更大宽度的情况更大。这一发现证实了比较值的J为一个给定的裂纹的进展为研究的三个情况。为了进行详尽的研究,我们重点研究了光栅宽度(包括0.42 mm, 0.56 mm至0.68 mm)对印刷PLA裂纹扩展的影响。其他打印参数的研究正在进行中。为了突出开裂机制,将在扫描电镜上进行更深入的微观观察。本文的分析可为FDM零件的设计提供决策支持。实际上,我们可以选择栅格宽度,以提供对功能部件所需的裂纹扩展的阻力。本文对FDM打印CT试件的损伤机理进行了分析。这个课题代表了许多研究方向的新方向。在我们的研究中,我们使用J积分理论方法通过确定阻力曲线(J-∆a)来研究这些部件的断裂行为。
{"title":"Experimental study of the fracture of CT specimens printed in PLA as a function of the raster width","authors":"O. Aourik, M. Othmani, A. Chouaf","doi":"10.5604/01.3001.0053.9595","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9595","url":null,"abstract":"The FDM (Fused Deposition Modelling) additive manufacturing process is characterised by a large number of process variables that determine the mechanical properties and quality of the manufactured parts. When printing layer by layer, the filaments constituting the layer are welded on the one hand between them in the same layer and on the other hand between the superimposed layers, this welding develops on the contact surfaces (raster width) along the deposited filaments. The quality of this welding determines the resistance to crack propagation between filaments and between layers. This article aims to study the effect of the width of the raster on the resistance to crack propagation in a structure obtained by FDM.We have developed an experimental approach from CT specimens to determine the tensile strength of polylactic acid (PLA) polymers, considering the J-Integral method. And given the complexity of the problem, three cases of raster width (l=0.42 mm, l=0.56 mm and l=0.68 mm) have been treated.According to the results obtained (J, ∆a), the resistance to crack propagation in the parts printed by FDM seems to be better when the width of the filament is small. Indeed, the energy necessary to break the specimen is relatively greater than in the case of a larger width. This finding was confirmed by comparing the values of J for a given advancement of the crack for the three cases studied.In order to present an exhaustive study, we focused on the effect of raster widths (including 0.42 mm, 0.56 mm to 0.68 mm) on the crack propagation of printed PLA. This study is in progress for other printing parameters. To highlight the cracking mechanisms, microscopic observations will be developed in greater depth at the SEM.Our analysis can be used as decision support in the design of FDM parts. In effect, we can choose the raster width that would provide the resistance to crack propagation desired for a functional part.In this article, we analysed the damage mechanism of CT specimens printed by FDM. This subject represents a new direction for many lines of research. For our study, we used the J-Integral theoretical approach to study the fracture behaviour of these parts by determining the resistance curves (J-∆a).","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135056278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.5604/01.3001.0053.9591
A. Krzak, A.J. Nowak
Cryogenic engineering is gaining more and more interest in various industry sectors, which leads to an intensive search for effective solutions. The article presents the findings of mechanical testing conducted on glass-epoxy laminates at room temperature and after long-term contact with liquid nitrogen.To compare the impact properties and flexural strength, the samples were tested under cryogenic and room conditions, and then the fracture locations were identified using the Leica DVM6 microscope. The study brings value to the emerging field of cryogenic engineering by providing valuable information on the mechanical properties of glass-epoxy composites under cryogenic conditions.It has been found out that immersing the glass-epoxy composites into the Dewar had minimal influence on impact and flexural strength properties. The most noticeable changes were observed in the case of the EP_4_2 composite. The material consists of a solution of brominated epoxy resin in an organic solvent. It is used to produce laminates in electrical engineering and printed circuits in electronics, where it should exhibit excellent impact properties.One of the prospective research directions is a thorough analysis of the mechanical properties of the developed composite materials during cryogenic cycles.The study aims to determine the effect of different compositions of glass fabric-reinforced resin with a weight of 205 g/m2 on the mechanical properties of the developed composite materials at both room temperature and after long-term exposure to liquid nitrogen. Those investigations serve as surveillance for developing of new material solutions directed towards cryogenic applications and are essential for subsequent stages of research.
{"title":"Mechanical analysis of multilayer composite materials with duroplastic matrix after exposure to low temperatures","authors":"A. Krzak, A.J. Nowak","doi":"10.5604/01.3001.0053.9591","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9591","url":null,"abstract":"Cryogenic engineering is gaining more and more interest in various industry sectors, which leads to an intensive search for effective solutions. The article presents the findings of mechanical testing conducted on glass-epoxy laminates at room temperature and after long-term contact with liquid nitrogen.To compare the impact properties and flexural strength, the samples were tested under cryogenic and room conditions, and then the fracture locations were identified using the Leica DVM6 microscope. The study brings value to the emerging field of cryogenic engineering by providing valuable information on the mechanical properties of glass-epoxy composites under cryogenic conditions.It has been found out that immersing the glass-epoxy composites into the Dewar had minimal influence on impact and flexural strength properties. The most noticeable changes were observed in the case of the EP_4_2 composite. The material consists of a solution of brominated epoxy resin in an organic solvent. It is used to produce laminates in electrical engineering and printed circuits in electronics, where it should exhibit excellent impact properties.One of the prospective research directions is a thorough analysis of the mechanical properties of the developed composite materials during cryogenic cycles.The study aims to determine the effect of different compositions of glass fabric-reinforced resin with a weight of 205 g/m2 on the mechanical properties of the developed composite materials at both room temperature and after long-term exposure to liquid nitrogen. Those investigations serve as surveillance for developing of new material solutions directed towards cryogenic applications and are essential for subsequent stages of research.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.5604/01.3001.0053.9592
M.A. Hassan, M. Ali, O.I. Abdullah
The brake system is the most significant component of a vehicle because it protects the driver, passengers, other road users, and property on both sides of the road. The basic principle of the disc brake system depends on the friction-based between the brake pads and rotor disc.The paper introduced a developed 3D finite element thermal model of the brake system to simulate the heat generated by friction in the vehicle's disc brake.The results presented the surface temperature at any instant of the disc brake under various initial velocities when the materials properties of the rotor disc and pad depend on temperature.The main aim of the present paper is to build a numerical model to simulate the braking process under various initial vehicle velocities and investigate the influence of the material properties when they function on temperature and constant.The maximum difference between the two cases (contact and depend on the temperature) was 17 K for the initial velocity of 144,120. Also, it was found out that the percentage differences of the surface temperature increasing with the rise in initial vehicle velocity were 323% and 392.5% when the initial velocity of the vehicle increased from 100 km/h to 144 km/h.
{"title":"Numerical analysis of the thermal behaviour and performance of a brake system with temperature-dependent material properties","authors":"M.A. Hassan, M. Ali, O.I. Abdullah","doi":"10.5604/01.3001.0053.9592","DOIUrl":"https://doi.org/10.5604/01.3001.0053.9592","url":null,"abstract":"The brake system is the most significant component of a vehicle because it protects the driver, passengers, other road users, and property on both sides of the road. The basic principle of the disc brake system depends on the friction-based between the brake pads and rotor disc.The paper introduced a developed 3D finite element thermal model of the brake system to simulate the heat generated by friction in the vehicle's disc brake.The results presented the surface temperature at any instant of the disc brake under various initial velocities when the materials properties of the rotor disc and pad depend on temperature.The main aim of the present paper is to build a numerical model to simulate the braking process under various initial vehicle velocities and investigate the influence of the material properties when they function on temperature and constant.The maximum difference between the two cases (contact and depend on the temperature) was 17 K for the initial velocity of 144,120. Also, it was found out that the percentage differences of the surface temperature increasing with the rise in initial vehicle velocity were 323% and 392.5% when the initial velocity of the vehicle increased from 100 km/h to 144 km/h.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135055424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.5604/01.3001.0053.8842
P. Kurniasih, W.A. Wirawan, A. Narto, O.S. Pribadi, N.A. Imron, N.F. Rachman, A. Pradipta
Fibre Reinforced Polymer Composites have been extensively developed to construct fishing vessels. This study reports on the successful development of the Agel Leaf Fibre (ALF)-Epoxy composite reinforced with carbon powder and fabricated using the Vacuum Infusion method.The composites were prepared by varying the carbon powder filler content at volumes of 0%, 10%, and 30%. The fire resistance of the composites was investigated using a burning test according to ASTM D-3014 standards. The morphology of the composites was observed through SEM analysis and analysed using ImageJ software.The research findings reveal that adding 30% carbon powder in the HCP composite reduced the burning rate by 42.624 mm/sec and the time to ignition by 17.33 seconds, indicating improved fire resistance properties. The carbon powder inhibited flame propagation and reduced the combustion rate by 0.49%. The SEM examination confirmed that the fibre porosity decreased, resulting in a denser composite with enhanced fibre-matrix adhesion. Therefore, the implementation of fire-resistant composite materials in fishing vessel construction can be realised.The present study primarily examined the immediate effects of carbon powder additions on the morphology of the composites. However, it is crucial to consider these composites’ long-term stability and durability. Future research should investigate the ageing behaviour, considering environmental factors such as humidity, temperature, and UV radiation, to assess their impact on the morphology and flammability resistance of the composites. Additionally, it is essential to acknowledge that other factors, including fibre orientation, fibre length, and matrix properties, can significantly influence the overall performance of the composites.The enhanced flammability resistance of Agel Leaf Fibre-Epoxy composites with carbon powder additions holds significant benefits for fishing boat applications. In marine environments, the risk of fire incidents on fishing boats is high, making materials with good fire resistance highly desirable. Therefore, implementing fire-resistant composite materials in fishing boat construction can be realised to reduce the risk of fire incidents in high-seas fishing vessels.Composites with added carbon powder exhibited smaller flames, slower burning rates, and a lack of significant flame propagation. This suggests that adding carbon powder acts as an oxygen barrier and reduces the availability of fuel within the composite.
{"title":"Flammability and morphology of Agel leaf fibre- epoxy composite modified with carbon powder for fishing boat applications","authors":"P. Kurniasih, W.A. Wirawan, A. Narto, O.S. Pribadi, N.A. Imron, N.F. Rachman, A. Pradipta","doi":"10.5604/01.3001.0053.8842","DOIUrl":"https://doi.org/10.5604/01.3001.0053.8842","url":null,"abstract":"Fibre Reinforced Polymer Composites have been extensively developed to construct fishing vessels. This study reports on the successful development of the Agel Leaf Fibre (ALF)-Epoxy composite reinforced with carbon powder and fabricated using the Vacuum Infusion method.The composites were prepared by varying the carbon powder filler content at volumes of 0%, 10%, and 30%. The fire resistance of the composites was investigated using a burning test according to ASTM D-3014 standards. The morphology of the composites was observed through SEM analysis and analysed using ImageJ software.The research findings reveal that adding 30% carbon powder in the HCP composite reduced the burning rate by 42.624 mm/sec and the time to ignition by 17.33 seconds, indicating improved fire resistance properties. The carbon powder inhibited flame propagation and reduced the combustion rate by 0.49%. The SEM examination confirmed that the fibre porosity decreased, resulting in a denser composite with enhanced fibre-matrix adhesion. Therefore, the implementation of fire-resistant composite materials in fishing vessel construction can be realised.The present study primarily examined the immediate effects of carbon powder additions on the morphology of the composites. However, it is crucial to consider these composites’ long-term stability and durability. Future research should investigate the ageing behaviour, considering environmental factors such as humidity, temperature, and UV radiation, to assess their impact on the morphology and flammability resistance of the composites. Additionally, it is essential to acknowledge that other factors, including fibre orientation, fibre length, and matrix properties, can significantly influence the overall performance of the composites.The enhanced flammability resistance of Agel Leaf Fibre-Epoxy composites with carbon powder additions holds significant benefits for fishing boat applications. In marine environments, the risk of fire incidents on fishing boats is high, making materials with good fire resistance highly desirable. Therefore, implementing fire-resistant composite materials in fishing boat construction can be realised to reduce the risk of fire incidents in high-seas fishing vessels.Composites with added carbon powder exhibited smaller flames, slower burning rates, and a lack of significant flame propagation. This suggests that adding carbon powder acts as an oxygen barrier and reduces the availability of fuel within the composite.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136260477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-01DOI: 10.5604/01.3001.0053.8844
E.M. Kiass, K. Zarbane, Z. Beidouri
The present study aims to conduct a literature review on the various methods explored to enhance the quality of AlSi10Mg parts manufactured via the Selective Laser Melting (SLM) process. Specifically, the research focuses on identifying strategies for reducing the porosity level in SLM-fabricated AlSi10Mg parts. Considering the highly competitive nature of the market in which SLM technology is employed, improving part quality is necessary to ensure business continuity and maintain a competitive edge.The present study offers a comprehensive examination of the SLM process, particularly emphasising the diverse parameters that can influence the porosity rate in SLM-fabricated parts. By providing a detailed description of the SLM process, we highlight the intricacy of this technology and discuss the significance of various parameters. Furthermore, we present a literature review of prior research on SLM, summarising the studied parameters and their impact on porosity. This research aims to enhance our understanding of the SLM process and the parameters that affect the density of SLM-fabricated parts.The present study aims to identify research opportunities in the field of SLM technology. One particularly promising area of investigation is exploring the correlation between scan direction and the porosity rate in SLM-fabricated parts. This research seeks to enhance our understanding of the relationship between these two parameters and their potential impact on the quality of SLM-fabricated parts.By reducing porosity, industries such as aerospace and aeronautics can attain enhanced performance through mechanical system optimisation.The present study summarises the various methods previously investigated for reducing the porosity rate in parts manufactured using the SLM process. Additionally, it proposes new avenues for achieving further parameter optimisation to attain higher levels of quality.
{"title":"Process parameters effect on porosity rate of AlSi10Mg parts additively manufactured by Selective Laser Melting: challenges and research opportunities","authors":"E.M. Kiass, K. Zarbane, Z. Beidouri","doi":"10.5604/01.3001.0053.8844","DOIUrl":"https://doi.org/10.5604/01.3001.0053.8844","url":null,"abstract":"The present study aims to conduct a literature review on the various methods explored to enhance the quality of AlSi10Mg parts manufactured via the Selective Laser Melting (SLM) process. Specifically, the research focuses on identifying strategies for reducing the porosity level in SLM-fabricated AlSi10Mg parts. Considering the highly competitive nature of the market in which SLM technology is employed, improving part quality is necessary to ensure business continuity and maintain a competitive edge.The present study offers a comprehensive examination of the SLM process, particularly emphasising the diverse parameters that can influence the porosity rate in SLM-fabricated parts. By providing a detailed description of the SLM process, we highlight the intricacy of this technology and discuss the significance of various parameters. Furthermore, we present a literature review of prior research on SLM, summarising the studied parameters and their impact on porosity. This research aims to enhance our understanding of the SLM process and the parameters that affect the density of SLM-fabricated parts.The present study aims to identify research opportunities in the field of SLM technology. One particularly promising area of investigation is exploring the correlation between scan direction and the porosity rate in SLM-fabricated parts. This research seeks to enhance our understanding of the relationship between these two parameters and their potential impact on the quality of SLM-fabricated parts.By reducing porosity, industries such as aerospace and aeronautics can attain enhanced performance through mechanical system optimisation.The present study summarises the various methods previously investigated for reducing the porosity rate in parts manufactured using the SLM process. Additionally, it proposes new avenues for achieving further parameter optimisation to attain higher levels of quality.","PeriodicalId":8297,"journal":{"name":"Archives of materials science and engineering","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135806101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}