Interpreting p-Values and Confidence Intervals Using Well-Calibrated Null Preference Priors

IF 3.4 1区 数学 Q1 STATISTICS & PROBABILITY Statistical Science Pub Date : 2022-11-01 DOI:10.1214/21-sts833
M. Fay, M. Proschan, E. Brittain, R. Tiwari
{"title":"Interpreting p-Values and Confidence Intervals Using Well-Calibrated Null Preference Priors","authors":"M. Fay, M. Proschan, E. Brittain, R. Tiwari","doi":"10.1214/21-sts833","DOIUrl":null,"url":null,"abstract":"We propose well-calibrated null preference priors for use with one-sided hypothesis tests, such that resulting Bayesian and frequentist inferences agree. Null preference priors mean that they have nearly 100% of their prior belief in the null hypothesis, and well-calibrated priors mean that the resulting posterior beliefs in the alternative hypothesis are not overconfident. This formulation expands the class of problems giving Bayes-frequentist agreement to include problems involving discrete distributions such as binomial and negative binomial oneand two-sample exact (i.e., valid) tests. When applicable, these priors give posterior belief in the null hypothesis that is a valid p-value, and the null preference prior emphasizes that large p-values may simply represent insufficient data to overturn prior belief. This formulation gives a Bayesian interpretation of some common frequentist tests, as well as more intuitively explaining lesser known and less straightforward confidence intervals for two-sample tests.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/21-sts833","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We propose well-calibrated null preference priors for use with one-sided hypothesis tests, such that resulting Bayesian and frequentist inferences agree. Null preference priors mean that they have nearly 100% of their prior belief in the null hypothesis, and well-calibrated priors mean that the resulting posterior beliefs in the alternative hypothesis are not overconfident. This formulation expands the class of problems giving Bayes-frequentist agreement to include problems involving discrete distributions such as binomial and negative binomial oneand two-sample exact (i.e., valid) tests. When applicable, these priors give posterior belief in the null hypothesis that is a valid p-value, and the null preference prior emphasizes that large p-values may simply represent insufficient data to overturn prior belief. This formulation gives a Bayesian interpretation of some common frequentist tests, as well as more intuitively explaining lesser known and less straightforward confidence intervals for two-sample tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用校准良好的零偏好先验解释p值和置信区间
我们提出了校准良好的零偏好先验,用于单侧假设检验,从而得出贝叶斯和频率论推断一致。零偏好先验意味着他们对零假设有近100%的先验信念,而校准良好的先验意味着对替代假设的后验信念不会过于自信。该公式扩展了给出贝叶斯频率论一致性的一类问题,包括涉及离散分布的问题,如二项式和负二项式一样本和两样本精确(即有效)检验。在适用的情况下,这些先验给出了零假设的后验信念,即有效的p值,而零偏好先验强调大的p值可能只是代表不足以推翻先验信念的数据。该公式对一些常见的频繁度测试进行了贝叶斯解释,并更直观地解释了两个样本测试的鲜为人知和不太直接的置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
期刊最新文献
On the Use of Auxiliary Variables in Multilevel Regression and Poststratification. Scalable Empirical Bayes Inference and Bayesian Sensitivity Analysis. Variable Selection Using Bayesian Additive Regression Trees. Causal Inference Methods for Combining Randomized Trials and Observational Studies: A Review. Defining Replicability of Prediction Rules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1