首页 > 最新文献

Statistical Science最新文献

英文 中文
On the mixed-model analysis of covariance in cluster-randomized trials. 聚类随机试验中协方差的混合模型分析。
IF 3.4 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2026-02-01 Epub Date: 2026-01-14 DOI: 10.1214/24-sts944
Bingkai Wang, Michael O Harhay, Jiaqi Tong, Dylan S Small, Tim P Morris, Fan Li

In the analyses of cluster-randomized trials, mixed-model analysis of covariance (ANCOVA) is a standard approach for covariate adjustment and handling within-cluster correlations. However, when the normality, linearity, or the random-intercept assumption is violated, the validity and efficiency of the mixed-model ANCOVA estimators for estimating the average treatment effect remain unclear. Under the potential outcomes framework, we prove that the mixed-model ANCOVA estimators for the average treatment effect are consistent and asymptotically normal under arbitrary misspecification of its working model. If the probability of receiving treatment is 0.5 for each cluster, we further show that the model-based variance estimator under mixed-model ANCOVA1 (ANCOVA without treatment-covariate interactions) remains consistent, clarifying that the confidence interval given by standard software is asymptotically valid even under model misspecification. Beyond robustness, we discuss several insights on precision among classical methods for analyzing cluster-randomized trials, including the mixed-model ANCOVA, individual-level ANCOVA, and cluster-level ANCOVA estimators. These insights may inform the choice of methods in practice. Our analytical results and insights are illustrated via simulation studies and analyses of three cluster-randomized trials.

在聚类随机试验分析中,混合模型协方差分析(ANCOVA)是协变量调整和处理聚类内相关性的标准方法。然而,当违反正态性、线性或随机截距假设时,混合模型ANCOVA估计器估计平均治疗效果的有效性和效率仍然不清楚。在潜在结果框架下,我们证明了在其工作模型任意错规范下,平均治疗效果的混合模型ANCOVA估计量是一致且渐近正态的。如果每个集群接受治疗的概率为0.5,我们进一步表明混合模型ANCOVA1(没有治疗-协变量相互作用的ANCOVA)下基于模型的方差估计量保持一致,澄清了标准软件给出的置信区间即使在模型错误规范下也是渐近有效的。除了稳健性之外,我们还讨论了分析集群随机试验的经典方法中关于精度的一些见解,包括混合模型ANCOVA,个人水平ANCOVA和集群水平ANCOVA估计器。这些见解可以为实践中方法的选择提供信息。我们的分析结果和见解是通过三个集群随机试验的模拟研究和分析来说明的。
{"title":"On the mixed-model analysis of covariance in cluster-randomized trials.","authors":"Bingkai Wang, Michael O Harhay, Jiaqi Tong, Dylan S Small, Tim P Morris, Fan Li","doi":"10.1214/24-sts944","DOIUrl":"10.1214/24-sts944","url":null,"abstract":"<p><p>In the analyses of cluster-randomized trials, mixed-model analysis of covariance (ANCOVA) is a standard approach for covariate adjustment and handling within-cluster correlations. However, when the normality, linearity, or the random-intercept assumption is violated, the validity and efficiency of the mixed-model ANCOVA estimators for estimating the average treatment effect remain unclear. Under the potential outcomes framework, we prove that the mixed-model ANCOVA estimators for the average treatment effect are consistent and asymptotically normal under arbitrary misspecification of its working model. If the probability of receiving treatment is 0.5 for each cluster, we further show that the model-based variance estimator under mixed-model ANCOVA1 (ANCOVA without treatment-covariate interactions) remains consistent, clarifying that the confidence interval given by standard software is asymptotically valid even under model misspecification. Beyond robustness, we discuss several insights on precision among classical methods for analyzing cluster-randomized trials, including the mixed-model ANCOVA, individual-level ANCOVA, and cluster-level ANCOVA estimators. These insights may inform the choice of methods in practice. Our analytical results and insights are illustrated via simulation studies and analyses of three cluster-randomized trials.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"41 1","pages":"49-68"},"PeriodicalIF":3.4,"publicationDate":"2026-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12803445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145991759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replicable Bandits for Digital Health Interventions. 数字健康干预的可复制强盗。
IF 3.4 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-11-01 Epub Date: 2026-01-06 DOI: 10.1214/25-sts1017
Kelly W Zhang, Nowell Closser, Anna L Trella, Susan A Murphy

Adaptive treatment assignment algorithms, such as bandit algorithms, are increasingly used in digital health intervention clinical trials. Frequently the data collected from these trials is used to conduct causal inference and related data analyses to decide how to refine the intervention, and whether to roll-out the intervention more broadly. This work studies inference for estimands that depend on the adaptive algorithm itself; a simple example is the mean reward under the adaptive algorithm. Specifically, we investigate the replicability of statistical analyses concerning such estimands when using data from trials deploying adaptive treatment assignment algorithms. We demonstrate that many standard statistical estimators can be inconsistent and fail to be replicable across repetitions of the clinical trial, even as the sample size grows large. We show that this non-replicability is intimately related to properties of the adaptive algorithm itself. We introduce a formal definition of a "replicable bandit algorithm" and prove that under such algorithms, a wide variety of common statistical estimators are guaranteed to be consistent and asymptotically normal. We present both theoretical results and simulation studies based on a mobile health oral health self-care intervention. Our findings underscore the importance of designing adaptive algorithms with replicability in mind, especially for settings like digital health where deployment decisions rely heavily on replicated evidence. We conclude by discussing open questions on the connections between algorithm design, statistical inference, and experimental replicability.

自适应治疗分配算法,如强盗算法,越来越多地用于数字健康干预临床试验。通常,从这些试验中收集的数据用于进行因果推理和相关数据分析,以决定如何改进干预措施,以及是否更广泛地推广干预措施。这项工作研究了依赖于自适应算法本身的估计的推理;一个简单的例子是自适应算法下的平均奖励。具体而言,我们研究了在使用采用自适应治疗分配算法的试验数据时,有关这些估计的统计分析的可重复性。我们证明,即使样本量增加,许多标准统计估计量也可能不一致,并且无法在重复的临床试验中复制。我们表明,这种不可复制性与自适应算法本身的性质密切相关。我们引入了“可复制强盗算法”的形式化定义,并证明了在这种算法下,各种常见的统计估计量是保证一致和渐近正态的。我们提出了基于移动健康口腔健康自我保健干预的理论结果和模拟研究。我们的研究结果强调了设计具有可复制性的自适应算法的重要性,特别是对于像数字健康这样的环境,部署决策严重依赖于可复制的证据。最后,我们讨论了算法设计、统计推断和实验可复制性之间的联系。
{"title":"Replicable Bandits for Digital Health Interventions.","authors":"Kelly W Zhang, Nowell Closser, Anna L Trella, Susan A Murphy","doi":"10.1214/25-sts1017","DOIUrl":"10.1214/25-sts1017","url":null,"abstract":"<p><p>Adaptive treatment assignment algorithms, such as bandit algorithms, are increasingly used in digital health intervention clinical trials. Frequently the data collected from these trials is used to conduct causal inference and related data analyses to decide how to refine the intervention, and whether to roll-out the intervention more broadly. This work studies inference for estimands that depend on the adaptive algorithm itself; a simple example is the mean reward under the adaptive algorithm. Specifically, we investigate the replicability of statistical analyses concerning such estimands when using data from trials deploying adaptive treatment assignment algorithms. We demonstrate that many standard statistical estimators can be inconsistent and fail to be replicable across repetitions of the clinical trial, even as the sample size grows large. We show that this non-replicability is intimately related to properties of the adaptive algorithm itself. We introduce a formal definition of a \"replicable bandit algorithm\" and prove that under such algorithms, a wide variety of common statistical estimators are guaranteed to be consistent and asymptotically normal. We present both theoretical results and simulation studies based on a mobile health oral health self-care intervention. Our findings underscore the importance of designing adaptive algorithms with replicability in mind, especially for settings like digital health where deployment decisions rely heavily on replicated evidence. We conclude by discussing open questions on the connections between algorithm design, statistical inference, and experimental replicability.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"40 4","pages":"671-691"},"PeriodicalIF":3.4,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12799202/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145971483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Use of Auxiliary Variables in Multilevel Regression and Poststratification. 辅助变量在多水平回归和后分层中的应用。
IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-05-01 Epub Date: 2025-06-02 DOI: 10.1214/24-sts932
Yajuan Si

Multilevel regression and poststratification (MRP) is a popular method for addressing selection bias in subgroup estimation, with broad applications across fields from social sciences to public health. In this paper, we examine the inferential validity of MRP in finite populations, exploring the impact of poststratification and model specification. The success of MRP relies heavily on the availability of auxiliary information that is strongly related to the outcome. To enhance the fitting performance of the outcome model, we recommend modeling the inclusion probabilities conditionally on auxiliary variables and incorporating flexible functions of estimated inclusion probabilities as predictors in the mean structure. We present a statistical data integration framework that offers robust inferences for probability and nonprobability surveys, addressing various challenges in practical applications. Our simulation studies indicate the statistical validity of MRP, which involves a tradeoff between bias and variance, with greater benefits for subgroup estimates with small sample sizes, compared to alternative methods. We have applied our methods to the Adolescent Brain Cognitive Development (ABCD) Study, which collected information on children across 21 geographic locations in the U.S. to provide national representation, but is subject to selection bias as a nonprobability sample. We focus on the cognition measure of diverse groups of children in the ABCD study and show that the use of auxiliary variables affects the findings on cognitive performance.

多水平回归和后分层(MRP)是一种解决亚群估计中选择偏差的流行方法,广泛应用于从社会科学到公共卫生的各个领域。在本文中,我们检验了有限种群中MRP的推理有效性,探讨了后分层和模型规范的影响。MRP的成功很大程度上依赖于与结果密切相关的辅助信息的可用性。为了提高结果模型的拟合性能,我们建议在辅助变量上有条件地建模包含概率,并将估计包含概率的灵活函数作为平均结构的预测因子。我们提出了一个统计数据集成框架,为概率和非概率调查提供了强大的推论,解决了实际应用中的各种挑战。我们的模拟研究表明MRP的统计有效性,它涉及到偏差和方差之间的权衡,与其他方法相比,在小样本量的亚组估计中具有更大的优势。我们将我们的方法应用于青少年大脑认知发展(ABCD)研究,该研究收集了美国21个地理位置的儿童的信息,以提供全国代表性,但作为非概率样本,存在选择偏差。我们重点研究了ABCD研究中不同群体儿童的认知测量,并表明辅助变量的使用会影响认知表现的结果。
{"title":"On the Use of Auxiliary Variables in Multilevel Regression and Poststratification.","authors":"Yajuan Si","doi":"10.1214/24-sts932","DOIUrl":"10.1214/24-sts932","url":null,"abstract":"<p><p>Multilevel regression and poststratification (MRP) is a popular method for addressing selection bias in subgroup estimation, with broad applications across fields from social sciences to public health. In this paper, we examine the inferential validity of MRP in finite populations, exploring the impact of poststratification and model specification. The success of MRP relies heavily on the availability of auxiliary information that is strongly related to the outcome. To enhance the fitting performance of the outcome model, we recommend modeling the inclusion probabilities conditionally on auxiliary variables and incorporating flexible functions of estimated inclusion probabilities as predictors in the mean structure. We present a statistical data integration framework that offers robust inferences for probability and nonprobability surveys, addressing various challenges in practical applications. Our simulation studies indicate the statistical validity of MRP, which involves a tradeoff between bias and variance, with greater benefits for subgroup estimates with small sample sizes, compared to alternative methods. We have applied our methods to the Adolescent Brain Cognitive Development (ABCD) Study, which collected information on children across 21 geographic locations in the U.S. to provide national representation, but is subject to selection bias as a nonprobability sample. We focus on the cognition measure of diverse groups of children in the ABCD study and show that the use of auxiliary variables affects the findings on cognitive performance.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"40 2","pages":"272-288"},"PeriodicalIF":3.9,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12140408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable Empirical Bayes Inference and Bayesian Sensitivity Analysis. 可扩展经验贝叶斯推理与贝叶斯敏感性分析。
IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-11-01 Epub Date: 2024-10-30 DOI: 10.1214/24-sts936
Hani Doss, Antonio Linero
<p><p>Consider a Bayesian setup in which we observe <math><mi>Y</mi></math> , whose distribution depends on a parameter <math><mi>θ</mi></math> , that is, <math><mi>Y</mi> <mo>∣</mo> <mi>θ</mi> <mspace></mspace> <mo>~</mo> <mspace></mspace> <msub><mrow><mi>π</mi></mrow> <mrow><mi>Y</mi> <mo>∣</mo> <mi>θ</mi></mrow> </msub> </math> . The parameter <math><mi>θ</mi></math> is unknown and treated as random, and a prior distribution chosen from some parametric family <math> <mfenced> <mrow> <msub><mrow><mi>π</mi></mrow> <mrow><mi>θ</mi></mrow> </msub> <mo>(</mo> <mo>⋅</mo> <mo>;</mo> <mi>h</mi> <mo>)</mo> <mo>,</mo> <mi>h</mi> <mo>∈</mo> <mi>ℋ</mi></mrow> </mfenced> </math> , is to be placed on it. For the subjective Bayesian there is a single prior in the family which represents his or her beliefs about <math><mi>θ</mi></math> , but determination of this prior is very often extremely difficult. In the empirical Bayes approach, the latent distribution on <math><mi>θ</mi></math> is estimated from the data. This is usually done by choosing the value of the hyperparameter <math><mi>h</mi></math> that maximizes some criterion. Arguably the most common way of doing this is to let <math><mi>m</mi> <mo>(</mo> <mi>h</mi> <mo>)</mo></math> be the marginal likelihood of <math><mi>h</mi></math> , that is, <math><mi>m</mi> <mo>(</mo> <mi>h</mi> <mo>)</mo> <mo>=</mo> <mo>∫</mo> <msub><mrow><mi>π</mi></mrow> <mrow><mi>Y</mi> <mspace></mspace> <mo>∣</mo> <mspace></mspace> <mi>θ</mi></mrow> </msub> <msub><mrow><mi>v</mi></mrow> <mrow><mi>h</mi></mrow> </msub> <mo>(</mo> <mi>θ</mi> <mo>)</mo> <mspace></mspace> <mi>d</mi> <mi>θ</mi></math> , and choose the value of <math><mi>h</mi></math> that maximizes <math><mi>m</mi> <mo>(</mo> <mo>⋅</mo> <mo>)</mo></math> . Unfortunately, except for a handful of textbook examples, analytic evaluation of <math><mi>a</mi> <mi>r</mi> <mi>g</mi> <mspace></mspace> <msub><mrow><mi>m</mi> <mi>a</mi> <mi>x</mi></mrow> <mrow><mi>h</mi></mrow> </msub> <mspace></mspace> <mi>m</mi> <mo>(</mo> <mi>h</mi> <mo>)</mo></math> is not feasible. The purpose of this paper is two-fold. First, we review the literature on estimating it and find that the most commonly used procedures are either potentially highly inaccurate or don't scale well with the dimension of <math><mi>h</mi></math> , the dimension of <math><mi>θ</mi></math> , or both. Second, we present a method for estimating <math><mi>a</mi> <mi>r</mi> <mi>g</mi> <mspace></mspace> <msub><mrow><mi>m</mi> <mi>a</mi> <mi>x</mi></mrow> <mrow><mi>h</mi></mrow> </msub> <mspace></mspace> <mi>m</mi> <mo>(</mo> <mi>h</mi> <mo>)</mo></math> , based on Markov chain Monte Carlo, that applies very generally and scales well with dimension. Let <math><mi>g</mi></math> be a real-valued function of <math><mi>θ</mi></math> , and let <math><mi>I</mi> <mo>(</mo> <mi>h</mi> <mo>)</mo></math> be the posterior expectation of <math><mi>g</mi> <mo>(</mo> <mi>θ</mi> <mo>)</mo></math> when the prior is <math> <msub><mrow><m
考虑一个贝叶斯设置,其中我们观察到Y,其分布依赖于参数θ,即Y∣θ ~ π Y∣θ。参数θ是未知的,被视为随机的,从某个参数族中选择一个先验分布π θ(⋅;H), H∈H。对于主观贝叶斯来说,家庭中有一个单一的先验,代表他或她对θ的信念,但确定这个先验通常是非常困难的。在经验贝叶斯方法中,从数据中估计θ上的潜在分布。这通常通过选择使某些准则最大化的超参数h的值来完成。可以说,最常用的方法是设m (h)为h的边际似然,即m (h) =∫π Y∣θ v h (θ) d θ,并选择使m(⋅)最大化的h值。不幸的是,除了少数教科书上的例子外,对一个r g m a x h m (h)的解析评价是不可用的。本文的目的是双重的。首先,我们回顾了关于估计它的文献,发现最常用的程序要么可能非常不准确,要么不能很好地与h的维度、θ的维度或两者相适应。其次,我们提出了一种基于马尔可夫链蒙特卡罗的估计r g ma x h m (h)的方法,该方法非常普遍,并且随维度的变化而变化。设g为θ的实值函数,设I (h)为g (θ)的后验期望,当先验为v h时。作为我们方法的副产品,我们展示了如何获得族I (h), h∈h的点估计和全局有效的置信带。为了说明我们的方法的范围,我们提供了三个具有不同特征的详细示例。
{"title":"Scalable Empirical Bayes Inference and Bayesian Sensitivity Analysis.","authors":"Hani Doss, Antonio Linero","doi":"10.1214/24-sts936","DOIUrl":"10.1214/24-sts936","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Consider a Bayesian setup in which we observe &lt;math&gt;&lt;mi&gt;Y&lt;/mi&gt;&lt;/math&gt; , whose distribution depends on a parameter &lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; , that is, &lt;math&gt;&lt;mi&gt;Y&lt;/mi&gt; &lt;mo&gt;∣&lt;/mo&gt; &lt;mi&gt;θ&lt;/mi&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mo&gt;~&lt;/mo&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt; &lt;mo&gt;∣&lt;/mo&gt; &lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;/math&gt; . The parameter &lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; is unknown and treated as random, and a prior distribution chosen from some parametric family &lt;math&gt; &lt;mfenced&gt; &lt;mrow&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mo&gt;⋅&lt;/mo&gt; &lt;mo&gt;;&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt; &lt;mo&gt;,&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;∈&lt;/mo&gt; &lt;mi&gt;ℋ&lt;/mi&gt;&lt;/mrow&gt; &lt;/mfenced&gt; &lt;/math&gt; , is to be placed on it. For the subjective Bayesian there is a single prior in the family which represents his or her beliefs about &lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; , but determination of this prior is very often extremely difficult. In the empirical Bayes approach, the latent distribution on &lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; is estimated from the data. This is usually done by choosing the value of the hyperparameter &lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt; that maximizes some criterion. Arguably the most common way of doing this is to let &lt;math&gt;&lt;mi&gt;m&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt; be the marginal likelihood of &lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt; , that is, &lt;math&gt;&lt;mi&gt;m&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt; &lt;mo&gt;=&lt;/mo&gt; &lt;mo&gt;∫&lt;/mo&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;Y&lt;/mi&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mo&gt;∣&lt;/mo&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mi&gt;θ&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;θ&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mi&gt;d&lt;/mi&gt; &lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; , and choose the value of &lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt; that maximizes &lt;math&gt;&lt;mi&gt;m&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mo&gt;⋅&lt;/mo&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt; . Unfortunately, except for a handful of textbook examples, analytic evaluation of &lt;math&gt;&lt;mi&gt;a&lt;/mi&gt; &lt;mi&gt;r&lt;/mi&gt; &lt;mi&gt;g&lt;/mi&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt; &lt;mi&gt;a&lt;/mi&gt; &lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mi&gt;m&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt; is not feasible. The purpose of this paper is two-fold. First, we review the literature on estimating it and find that the most commonly used procedures are either potentially highly inaccurate or don't scale well with the dimension of &lt;math&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/math&gt; , the dimension of &lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; , or both. Second, we present a method for estimating &lt;math&gt;&lt;mi&gt;a&lt;/mi&gt; &lt;mi&gt;r&lt;/mi&gt; &lt;mi&gt;g&lt;/mi&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt; &lt;mi&gt;a&lt;/mi&gt; &lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt; &lt;mrow&gt;&lt;mi&gt;h&lt;/mi&gt;&lt;/mrow&gt; &lt;/msub&gt; &lt;mspace&gt;&lt;/mspace&gt; &lt;mi&gt;m&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt; , based on Markov chain Monte Carlo, that applies very generally and scales well with dimension. Let &lt;math&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;/math&gt; be a real-valued function of &lt;math&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;/math&gt; , and let &lt;math&gt;&lt;mi&gt;I&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;h&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt; be the posterior expectation of &lt;math&gt;&lt;mi&gt;g&lt;/mi&gt; &lt;mo&gt;(&lt;/mo&gt; &lt;mi&gt;θ&lt;/mi&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt; when the prior is &lt;math&gt; &lt;msub&gt;&lt;mrow&gt;&lt;m","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"39 4","pages":"601-622"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654829/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142856550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Selection Using Bayesian Additive Regression Trees. 使用贝叶斯加性回归树进行变量选择。
IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-05-01 Epub Date: 2024-05-05 DOI: 10.1214/23-sts900
Chuji Luo, Michael J Daniels

Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.

变量选择是一个重要的统计问题。当候选预测因子为混合类型(如连续和二元),并以非线性和/或非加性方式影响响应变量时,这一问题就变得更具挑战性。在本文中,我们回顾了贝叶斯加性回归树(BART)模型的现有变量选择方法,该模型是一种非参数回归模型,具有足够的灵活性来捕捉预测因子之间的交互作用以及与响应的非线性关系。本综述的重点在于识别相关预测因子的能力。我们还提出了两种变量重要性测量方法,可用于基于置换的变量选择方法和 BART 的后向变量选择程序。我们介绍这些变式是为了说明当前方法的局限性和改进机会,并通过模拟对这些变式进行评估。
{"title":"Variable Selection Using Bayesian Additive Regression Trees.","authors":"Chuji Luo, Michael J Daniels","doi":"10.1214/23-sts900","DOIUrl":"10.1214/23-sts900","url":null,"abstract":"<p><p>Variable selection is an important statistical problem. This problem becomes more challenging when the candidate predictors are of mixed type (e.g. continuous and binary) and impact the response variable in nonlinear and/or non-additive ways. In this paper, we review existing variable selection approaches for the Bayesian additive regression trees (BART) model, a nonparametric regression model, which is flexible enough to capture the interactions between predictors and nonlinear relationships with the response. An emphasis of this review is on the ability to identify relevant predictors. We also propose two variable importance measures which can be used in a permutation-based variable selection approach, and a backward variable selection procedure for BART. We introduce these variations as a way of illustrating limitations and opportunities for improving current approaches and assess these via simulations.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"39 2","pages":"286-304"},"PeriodicalIF":3.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395240/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Causal Inference Methods for Combining Randomized Trials and Observational Studies: A Review. 随机试验与观察性研究相结合的因果推理方法综述。
IF 3.4 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2024-02-01 Epub Date: 2024-02-18 DOI: 10.1214/23-sts889
Bénédicte Colnet, Imke Mayer, Guanhua Chen, Awa Dieng, Ruohong Li, Gaël Varoquaux, Jean-Philippe Vert, Julie Josse, Shu Yang

With increasing data availability, causal effects can be evaluated across different data sets, both randomized controlled trials (RCTs) and observational studies. RCTs isolate the effect of the treatment from that of unwanted (confounding) co-occurring effects but they may suffer from unrepresentativeness, and thus lack external validity. On the other hand, large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined RCTs and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of RCTs using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models and doubly robust estimators. We then discuss methods that combine RCTs and observational data to either ensure unconfoundedness of the observational analysis or to improve (conditional) average treatment effect estimation. We also connect and contrast works developed in both the potential outcomes literature and the structural causal model literature. Finally, we compare the main methods using a simulation study and real world data to analyze the effect of tranexamic acid on the mortality rate in major trauma patients. A review of available codes and new implementations is also provided.

随着数据可用性的增加,因果效应可以通过不同的数据集进行评估,包括随机对照试验(rct)和观察性研究。随机对照试验将治疗效果与不想要的(混淆的)共发生效应分离开来,但它们可能缺乏代表性,因此缺乏外部效度。另一方面,大型观察样本通常更能代表目标人群,但可能会将混淆效应与感兴趣的治疗方法混为一谈。在本文中,我们回顾了越来越多的关于联合随机对照试验和观察性研究的因果推理方法的文献,力求两全其美。我们首先讨论利用观测数据的代表性来提高随机对照试验的普遍性的识别和估计方法。经典的估计方法包括加权估计、条件结果模型差估计和双鲁棒估计。然后,我们讨论了将随机对照试验和观察数据相结合的方法,以确保观察分析的无混淆性或改进(有条件的)平均治疗效果估计。我们还联系并对比了潜在结果文献和结构因果模型文献中发展起来的作品。最后,我们比较了模拟研究和真实世界数据的主要方法来分析氨甲环酸对重大创伤患者死亡率的影响。还提供了对可用代码和新实现的回顾。
{"title":"Causal Inference Methods for Combining Randomized Trials and Observational Studies: A Review.","authors":"Bénédicte Colnet, Imke Mayer, Guanhua Chen, Awa Dieng, Ruohong Li, Gaël Varoquaux, Jean-Philippe Vert, Julie Josse, Shu Yang","doi":"10.1214/23-sts889","DOIUrl":"10.1214/23-sts889","url":null,"abstract":"<p><p>With increasing data availability, causal effects can be evaluated across different data sets, both randomized controlled trials (RCTs) and observational studies. RCTs isolate the effect of the treatment from that of unwanted (confounding) co-occurring effects but they may suffer from unrepresentativeness, and thus lack external validity. On the other hand, large observational samples are often more representative of the target population but can conflate confounding effects with the treatment of interest. In this paper, we review the growing literature on methods for causal inference on combined RCTs and observational studies, striving for the best of both worlds. We first discuss identification and estimation methods that improve generalizability of RCTs using the representativeness of observational data. Classical estimators include weighting, difference between conditional outcome models and doubly robust estimators. We then discuss methods that combine RCTs and observational data to either ensure unconfoundedness of the observational analysis or to improve (conditional) average treatment effect estimation. We also connect and contrast works developed in both the potential outcomes literature and the structural causal model literature. Finally, we compare the main methods using a simulation study and real world data to analyze the effect of tranexamic acid on the mortality rate in major trauma patients. A review of available codes and new implementations is also provided.</p>","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"39 1","pages":"165-191"},"PeriodicalIF":3.4,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12499922/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145245327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods for Integrating Trials and Non-experimental Data to Examine Treatment Effect Heterogeneity 综合试验和非实验数据检验治疗效果异质性的方法
1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2023-11-01 DOI: 10.1214/23-sts890
Carly Lupton Brantner, Ting-Hsuan Chang, Trang Quynh Nguyen, Hwanhee Hong, Leon Di Stefano, Elizabeth A. Stuart
Estimating treatment effects conditional on observed covariates can improve the ability to tailor treatments to particular individuals. Doing so effectively requires dealing with potential confounding, and also enough data to adequately estimate effect moderation. A recent influx of work has looked into estimating treatment effect heterogeneity using data from multiple randomized controlled trials and/or observational datasets. With many new methods available for assessing treatment effect heterogeneity using multiple studies, it is important to understand which methods are best used in which setting, how the methods compare to one another, and what needs to be done to continue progress in this field. This paper reviews these methods broken down by data setting: aggregate-level data, federated learning, and individual participant-level data. We define the conditional average treatment effect and discuss differences between parametric and nonparametric estimators, and we list key assumptions, both those that are required within a single study and those that are necessary for data combination. After describing existing approaches, we compare and contrast them and reveal open areas for future research. This review demonstrates that there are many possible approaches for estimating treatment effect heterogeneity through the combination of datasets, but that there is substantial work to be done to compare these methods through case studies and simulations, extend them to different settings, and refine them to account for various challenges present in real data.
根据观察到的协变量估计治疗效果可以提高为特定个体量身定制治疗的能力。要有效地做到这一点,需要处理潜在的混杂因素,还需要有足够的数据来充分估计效果的适度性。最近大量的研究工作着眼于利用多个随机对照试验和/或观察数据集的数据来估计治疗效果的异质性。有许多新的方法可以通过多个研究来评估治疗效果的异质性,重要的是要了解哪种方法在哪种情况下使用最好,这些方法如何相互比较,以及需要做些什么来继续在这一领域取得进展。本文回顾了按数据设置分类的这些方法:聚合级数据、联邦学习和个体参与者级数据。我们定义了条件平均处理效果,并讨论了参数估计器和非参数估计器之间的差异,我们列出了关键假设,包括单个研究中所需的假设和数据组合所必需的假设。在描述了现有的方法之后,我们对它们进行了比较和对比,并揭示了未来研究的开放领域。这篇综述表明,有许多可能的方法可以通过数据集的组合来估计治疗效果的异质性,但是还有大量的工作要做,通过案例研究和模拟来比较这些方法,将它们扩展到不同的环境中,并对它们进行改进,以解释实际数据中存在的各种挑战。
{"title":"Methods for Integrating Trials and Non-experimental Data to Examine Treatment Effect Heterogeneity","authors":"Carly Lupton Brantner, Ting-Hsuan Chang, Trang Quynh Nguyen, Hwanhee Hong, Leon Di Stefano, Elizabeth A. Stuart","doi":"10.1214/23-sts890","DOIUrl":"https://doi.org/10.1214/23-sts890","url":null,"abstract":"Estimating treatment effects conditional on observed covariates can improve the ability to tailor treatments to particular individuals. Doing so effectively requires dealing with potential confounding, and also enough data to adequately estimate effect moderation. A recent influx of work has looked into estimating treatment effect heterogeneity using data from multiple randomized controlled trials and/or observational datasets. With many new methods available for assessing treatment effect heterogeneity using multiple studies, it is important to understand which methods are best used in which setting, how the methods compare to one another, and what needs to be done to continue progress in this field. This paper reviews these methods broken down by data setting: aggregate-level data, federated learning, and individual participant-level data. We define the conditional average treatment effect and discuss differences between parametric and nonparametric estimators, and we list key assumptions, both those that are required within a single study and those that are necessary for data combination. After describing existing approaches, we compare and contrast them and reveal open areas for future research. This review demonstrates that there are many possible approaches for estimating treatment effect heterogeneity through the combination of datasets, but that there is substantial work to be done to compare these methods through case studies and simulations, extend them to different settings, and refine them to account for various challenges present in real data.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"19 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515901","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Editorial: Special Issue on Reproducibility and Replicability 社论:重现性与可复制性特刊
IF 5.7 1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2023-11-01 DOI: 10.1214/23-sts909
Alicia L Carriquiry, Michael J. Daniels, Nancy M Reid
{"title":"Editorial: Special Issue on Reproducibility and Replicability","authors":"Alicia L Carriquiry, Michael J. Daniels, Nancy M Reid","doi":"10.1214/23-sts909","DOIUrl":"https://doi.org/10.1214/23-sts909","url":null,"abstract":"","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"35 1","pages":""},"PeriodicalIF":5.7,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139295518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Replication Success Under Questionable Research Practices—a Simulation Study 有问题的研究实践下的复制成功——一项模拟研究
1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2023-11-01 DOI: 10.1214/23-sts904
Francesca Freuli, Leonhard Held, Rachel Heyard
Increasing evidence suggests that the reproducibility and replicability of scientific findings is threatened by researchers employing questionable research practices (QRPs) in order to achieve statistically significant results. Numerous metrics have been developed to determine replication success but it has not yet been investigated how well those metrics perform in the presence of QRPs. This paper aims to compare the performance of different metrics quantifying replication success in the presence of four types of QRPs: cherry picking of outcomes, questionable interim analyses, questionable inclusion of covariates, and questionable subgroup analyses. Our results show that the metric based on the version of the sceptical p-value that is recalibrated in terms of effect size performs better in maintaining low values of overall type-I error rate, but often requires larger replication sample sizes compared to metrics based on significance, the controlled version of the sceptical p-value, meta-analysis or Bayes factors, especially when severe QRPs are employed.
越来越多的证据表明,科学发现的可重复性和可复制性受到研究人员采用可疑研究实践(qrp)以获得统计显著结果的威胁。已经开发了许多指标来确定复制是否成功,但尚未研究这些指标在qrp存在时的表现如何。本文旨在比较在四种qrp存在的情况下量化复制成功的不同指标的表现:结果的挑选,可疑的中期分析,可疑的协变量包含和可疑的亚组分析。我们的结果表明,根据效应大小重新校准的怀疑p值版本的度量在维持总体i型错误率的低值方面表现更好,但与基于显著性、怀疑p值的控制版本、元分析或贝叶斯因素的度量相比,通常需要更大的复制样本量,特别是当使用严重的qrp时。
{"title":"Replication Success Under Questionable Research Practices—a Simulation Study","authors":"Francesca Freuli, Leonhard Held, Rachel Heyard","doi":"10.1214/23-sts904","DOIUrl":"https://doi.org/10.1214/23-sts904","url":null,"abstract":"Increasing evidence suggests that the reproducibility and replicability of scientific findings is threatened by researchers employing questionable research practices (QRPs) in order to achieve statistically significant results. Numerous metrics have been developed to determine replication success but it has not yet been investigated how well those metrics perform in the presence of QRPs. This paper aims to compare the performance of different metrics quantifying replication success in the presence of four types of QRPs: cherry picking of outcomes, questionable interim analyses, questionable inclusion of covariates, and questionable subgroup analyses. Our results show that the metric based on the version of the sceptical p-value that is recalibrated in terms of effect size performs better in maintaining low values of overall type-I error rate, but often requires larger replication sample sizes compared to metrics based on significance, the controlled version of the sceptical p-value, meta-analysis or Bayes factors, especially when severe QRPs are employed.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135515751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Game-Theoretic Statistics and Safe Anytime-Valid Inference 博弈论统计与安全的任意有效推理
1区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2023-11-01 DOI: 10.1214/23-sts894
Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, Glenn Shafer
Safe anytime-valid inference (SAVI) provides measures of statistical evidence and certainty—e-processes for testing and confidence sequences for estimation—that remain valid at all stopping times, accommodating continuous monitoring and analysis of accumulating data and optional stopping or continuation for any reason. These measures crucially rely on test martingales, which are nonnegative martingales starting at one. Since a test martingale is the wealth process of a player in a betting game, SAVI centrally employs game-theoretic intuition, language and mathematics. We summarize the SAVI goals and philosophy, and report recent advances in testing composite hypotheses and estimating functionals in nonparametric settings.
安全的随时有效推理(SAVI)提供了统计证据和确定性过程的度量,用于测试和估计的置信度序列,在所有停止时间都保持有效,适应对累积数据的连续监测和分析,以及出于任何原因的可选停止或继续。这些度量主要依赖于从1开始的非负鞅的测试鞅。由于测试鞅是赌博游戏中玩家的财富过程,SAVI集中使用博弈论直觉、语言和数学。我们总结了SAVI的目标和理念,并报告了在非参数设置中测试复合假设和估计函数的最新进展。
{"title":"Game-Theoretic Statistics and Safe Anytime-Valid Inference","authors":"Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, Glenn Shafer","doi":"10.1214/23-sts894","DOIUrl":"https://doi.org/10.1214/23-sts894","url":null,"abstract":"Safe anytime-valid inference (SAVI) provides measures of statistical evidence and certainty—e-processes for testing and confidence sequences for estimation—that remain valid at all stopping times, accommodating continuous monitoring and analysis of accumulating data and optional stopping or continuation for any reason. These measures crucially rely on test martingales, which are nonnegative martingales starting at one. Since a test martingale is the wealth process of a player in a betting game, SAVI centrally employs game-theoretic intuition, language and mathematics. We summarize the SAVI goals and philosophy, and report recent advances in testing composite hypotheses and estimating functionals in nonparametric settings.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":"105 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135514670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Statistical Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1