V. Pirouzfar, Fariba Mohamadkhani, N. Van Nguyen, C. Su
{"title":"The technical and economic analysis of processing and conversion of heavy oil cuts to valuable refinery products","authors":"V. Pirouzfar, Fariba Mohamadkhani, N. Van Nguyen, C. Su","doi":"10.1515/ijcre-2022-0127","DOIUrl":null,"url":null,"abstract":"Abstract Many of the modern refineries are founded on converting/upgrading the heavy bases of low value to lighter products by higher added value like gasoline, jet fuel and diesel fuel. In this work, some process configurations in heavy refinery cracking, converting and treating are technically and economically evaluated. In this purpose, four process configurations for refinery plants are suggested. These processes are evaluated and analyzed to obtain the most optimal configurations with the aim of achieving the most valuable refinery products. The difference of the processes is in heavy residue conversion and processing. These processes are included the Asphalt Air Blowing Unit (AABU, Type 1), Delayed Coker Unit (DCU, Type 2), Heavy Residue Hydro-Conversion (HRH, Type 3) and Solvent De-Asphalting (SDA, Type 4). The units are common in mentioned refineries cases and just ABU, HCU, DCU, HRH and SDA are different. In economic consideration, the payout period is considered as one of the standard methods of assessing the economic projects and economically estimating them. As results, the highest rate of gasoline is recorded in the refinery type of DCU unit and the highest amount of LPG/C4/C3, kerosene and gasoline production observed in refinery type of HRH unit. The construction of refinery with ABU unit has minimum investment (980 million $) and highest rate of return (19.4).","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2022-0127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Many of the modern refineries are founded on converting/upgrading the heavy bases of low value to lighter products by higher added value like gasoline, jet fuel and diesel fuel. In this work, some process configurations in heavy refinery cracking, converting and treating are technically and economically evaluated. In this purpose, four process configurations for refinery plants are suggested. These processes are evaluated and analyzed to obtain the most optimal configurations with the aim of achieving the most valuable refinery products. The difference of the processes is in heavy residue conversion and processing. These processes are included the Asphalt Air Blowing Unit (AABU, Type 1), Delayed Coker Unit (DCU, Type 2), Heavy Residue Hydro-Conversion (HRH, Type 3) and Solvent De-Asphalting (SDA, Type 4). The units are common in mentioned refineries cases and just ABU, HCU, DCU, HRH and SDA are different. In economic consideration, the payout period is considered as one of the standard methods of assessing the economic projects and economically estimating them. As results, the highest rate of gasoline is recorded in the refinery type of DCU unit and the highest amount of LPG/C4/C3, kerosene and gasoline production observed in refinery type of HRH unit. The construction of refinery with ABU unit has minimum investment (980 million $) and highest rate of return (19.4).
期刊介绍:
The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.