Online Realtime Sentiment Analysis Tweets by Utilizing Streaming API Features From Twitter

Nfn Bahrawi
{"title":"Online Realtime Sentiment Analysis Tweets by Utilizing Streaming API Features From Twitter","authors":"Nfn Bahrawi","doi":"10.17933/jppi.2019.090105","DOIUrl":null,"url":null,"abstract":"Twitter is one of the social media that has a simple and fast concept, because short messages, news or information on Twitter can be more easily digested. This social media is also widely used as an object for researchers or industry to conduct sentiment analysis in the fields of social, economic, political or other fields. Opinion mining or also commonly called sentiment analysis is the process of analyzing text to get certain information in a sentence in the form of opinion. Sentiment analysis is one of the branches of the science of Text mining where text mining is a natural language processing technique and analytical method that is applied to text data to obtain relevant information. Public opinion or sentiment in social media twitter is very dynamic and fast changing, a real time sentiment analysis system is needed and it is automatically updated continuously so that changes can always be monitored, anytime and anywhere. This research builds a system so that it can analyze sentiment from twitter social media in realtime and automatically continuously. The results of the system trial succeeded in drawing data, conducting sentiment analysis and displaying it in graphical and web-based realtime and updated automatically. Furthermore, this research will be developed with a focus on the accuracy of the algorithms used in conducting the sentiment analysis process.","PeriodicalId":31332,"journal":{"name":"Jurnal Penelitian Pos dan Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Penelitian Pos dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17933/jppi.2019.090105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Twitter is one of the social media that has a simple and fast concept, because short messages, news or information on Twitter can be more easily digested. This social media is also widely used as an object for researchers or industry to conduct sentiment analysis in the fields of social, economic, political or other fields. Opinion mining or also commonly called sentiment analysis is the process of analyzing text to get certain information in a sentence in the form of opinion. Sentiment analysis is one of the branches of the science of Text mining where text mining is a natural language processing technique and analytical method that is applied to text data to obtain relevant information. Public opinion or sentiment in social media twitter is very dynamic and fast changing, a real time sentiment analysis system is needed and it is automatically updated continuously so that changes can always be monitored, anytime and anywhere. This research builds a system so that it can analyze sentiment from twitter social media in realtime and automatically continuously. The results of the system trial succeeded in drawing data, conducting sentiment analysis and displaying it in graphical and web-based realtime and updated automatically. Furthermore, this research will be developed with a focus on the accuracy of the algorithms used in conducting the sentiment analysis process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用推特的流媒体API功能在线实时情绪分析推特
推特是一种概念简单快捷的社交媒体,因为推特上的短信、新闻或信息更容易被消化。这种社交媒体也被广泛用作研究人员或行业在社会、经济、政治或其他领域进行情绪分析的对象。意见挖掘或通常称为情感分析,是分析文本,以意见的形式获得句子中的某些信息的过程。情感分析是文本挖掘科学的一个分支,其中文本挖掘是一种应用于文本数据以获取相关信息的自然语言处理技术和分析方法。社交媒体推特中的公众舆论或情绪是非常动态和快速变化的,需要一个实时的情绪分析系统,它会自动不断更新,以便随时、随时随地监控变化。本研究建立了一个系统,可以实时、自动、连续地分析推特社交媒体上的情绪。该系统的试验结果成功地绘制了数据,进行了情绪分析,并以图形和网络实时显示,并自动更新。此外,这项研究将重点关注情绪分析过程中使用的算法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Pengaruh Literasi Informasi terhadap Penggunaan E-Resources Mahasiswa STMIK Tasikmalaya dengan PLS-MGA Integration of Low Interaction Honeypot and ELK Stack as Attack Detection Systems on Servers Analisis Aspek-aspek Kepatuhan Penyelenggara Pos di Indonesia Analisis Penerapan Teknologi Informasi dalam Mendukung Pengembangan Local E-Government Pengembangan Talenta Nasional bidang Riset dan Inovasi melalui Perencanaan Pelatihan TIK berbasis Gender untuk ASN dan Masyarakat
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1