{"title":"Airborne Transmission of SARS-CoV-2: Evidence and Implications for Engineering Controls.","authors":"V. McNeill","doi":"10.1146/annurev-chembioeng-092220-111631","DOIUrl":null,"url":null,"abstract":"Since late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing a pandemic (coronavirus disease 2019, or COVID-19) with dire consequences, including widespread death, long-term illness, and societal and economic disruption. Although initially uncertain, evidence is now overwhelming that SARS-CoV-2 is transmitted primarily through small respiratory droplets and aerosols emitted by infected individuals. As a result, many effective nonpharmaceutical interventions for slowing virus transmission operate by blocking, filtering, or diluting respiratory aerosol, particularly in indoor environments. In this review, we discuss the evidence for airborne transmission of SARS-CoV-2 and implications for engineering solutions to reduce transmission risk. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092220-111631","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 9
Abstract
Since late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, causing a pandemic (coronavirus disease 2019, or COVID-19) with dire consequences, including widespread death, long-term illness, and societal and economic disruption. Although initially uncertain, evidence is now overwhelming that SARS-CoV-2 is transmitted primarily through small respiratory droplets and aerosols emitted by infected individuals. As a result, many effective nonpharmaceutical interventions for slowing virus transmission operate by blocking, filtering, or diluting respiratory aerosol, particularly in indoor environments. In this review, we discuss the evidence for airborne transmission of SARS-CoV-2 and implications for engineering solutions to reduce transmission risk. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.