A Monte Carlo algorithm for the extrema of tempered stable processes

Pub Date : 2023-06-30 DOI:10.1017/apr.2023.1
J. G. González Cázares, Aleksandar Mijatovi'c
{"title":"A Monte Carlo algorithm for the extrema of tempered stable processes","authors":"J. G. González Cázares, Aleksandar Mijatovi'c","doi":"10.1017/apr.2023.1","DOIUrl":null,"url":null,"abstract":"\n We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order \n \n \n \n$\\varepsilon^{-2}$\n\n \n if the mean squared error is at most \n \n \n \n$\\varepsilon^2$\n\n \n ) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2023.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We develop a novel Monte Carlo algorithm for the vector consisting of the supremum, the time at which the supremum is attained, and the position at a given (constant) time of an exponentially tempered Lévy process. The algorithm, based on the increments of the process without tempering, converges geometrically fast (as a function of the computational cost) for discontinuous and locally Lipschitz functions of the vector. We prove that the corresponding multilevel Monte Carlo estimator has optimal computational complexity (i.e. of order $\varepsilon^{-2}$ if the mean squared error is at most $\varepsilon^2$ ) and provide its central limit theorem (CLT). Using the CLT we construct confidence intervals for barrier option prices and various risk measures based on drawdown under the tempered stable (CGMY) model calibrated/estimated on real-world data. We provide non-asymptotic and asymptotic comparisons of our algorithm with existing approximations, leading to rule-of-thumb principles guiding users to the best method for a given set of parameters. We illustrate the performance of the algorithm with numerical examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
回火稳定过程极值的蒙特卡罗算法
我们为由上确界、达到上确界的时间和指数调和Lévy过程在给定(恒定)时间的位置组成的向量开发了一种新的蒙特卡罗算法。该算法基于无回火过程的增量,对于向量的不连续和局部Lipschitz函数,具有几何快速收敛性(作为计算成本的函数)。我们证明了相应的多级蒙特卡罗估计器具有最优计算复杂度(即,如果均方误差至多为$\varepsilon^2$,则为$\varepsilon^{-2}$阶),并提供了其中心极限定理(CLT)。使用CLT,我们在基于真实世界数据校准/估计的调和稳定(CGMY)模型下,基于下降构建了屏障期权价格和各种风险度量的置信区间。我们提供了我们的算法与现有近似的非渐近和渐近比较,从而得出经验法则,指导用户为给定的参数集选择最佳方法。我们用数值例子说明了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1