Inter-sexual comparison of body biomass, proximate biochemical composition, and fatty acid profiles of new juvenile squat lobsters (Pleuroncodes monodon) in the Southeast Pacific Ocean
Fabián Guzmán-Rivas, Marco Quispe-Machaca, Luis Olavarría, Maximiliano Zilleruelo, Ángel Urzúa
{"title":"Inter-sexual comparison of body biomass, proximate biochemical composition, and fatty acid profiles of new juvenile squat lobsters (Pleuroncodes monodon) in the Southeast Pacific Ocean","authors":"Fabián Guzmán-Rivas, Marco Quispe-Machaca, Luis Olavarría, Maximiliano Zilleruelo, Ángel Urzúa","doi":"10.1111/maec.12690","DOIUrl":null,"url":null,"abstract":"<p>In the wide distribution range of the red squat lobster <i>Pleuroncodes monodon</i> in the Southeast Pacific Ocean, there is an important nursery area on the southern coast of Chile. The new juvenile individuals from this nursery area are directly recruited into the adult squat lobster population, which is exploited by industrial fisheries. Despite the importance of new <i>P</i>. <i>monodon</i> juveniles for recruitment estimations in fishery management models, their bioenergetic condition and/or nutritional status at the onset of their benthic phase remain unknown, as are the differences in the biochemical composition and energy reserves of the two sexes, which could help explain the cost of the first breeding event in females. Therefore, in new juvenile squat lobsters with the same degree of immaturity, we quantified and compared between the sexes (female vs. male): the size (cephalothorax length, CL), body biomass (dry weight and organic matter), biochemical composition (proteins, glucose, and lipids), and fatty acid profiles (FAs). The results indicate that the CL of new juveniles was similar between the sexes, while the dry weight and organic matter presented significant differences, with higher values in new juvenile females (NJF) than new juvenile males (NJM). Similarly, the NJF had a higher content of proteins, glucose, and lipids than NJM. The FAs also showed significant differences between the sexes; the NJF had a higher content than NJM in all fatty acid classes (i.e., saturated, monounsaturated, and polyunsaturated), with the FAs DHA (C22:6n-3), EPA (C20:5n-3), oleic (C18:1n-9), palmitic (C16:0), and eicosatrienoic (C20:3n-3) significantly contributing to the differentiation of FA profiles between the sexes. All of the aforementioned differences among the multiple variables of the bioenergetic condition can indicate biochemical adaptations in the storage capacity of energy reserves, particularly among NJF that must support the high energy cost of the first reproductive event (characterized by embryo production and incubation), which occurs during the austral winter, a period predominated by cold-water temperatures and scarce food availability in the habitat. Overall, our findings have significant implications in fishery management models. In this case, defining the bioenergetic condition of the new juvenile squat lobsters can aid in predicting the density and stability of the adult population, which is exploited by commercial fisheries.</p>","PeriodicalId":49883,"journal":{"name":"Marine Ecology-An Evolutionary Perspective","volume":"43 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maec.12690","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Ecology-An Evolutionary Perspective","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maec.12690","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
In the wide distribution range of the red squat lobster Pleuroncodes monodon in the Southeast Pacific Ocean, there is an important nursery area on the southern coast of Chile. The new juvenile individuals from this nursery area are directly recruited into the adult squat lobster population, which is exploited by industrial fisheries. Despite the importance of new P. monodon juveniles for recruitment estimations in fishery management models, their bioenergetic condition and/or nutritional status at the onset of their benthic phase remain unknown, as are the differences in the biochemical composition and energy reserves of the two sexes, which could help explain the cost of the first breeding event in females. Therefore, in new juvenile squat lobsters with the same degree of immaturity, we quantified and compared between the sexes (female vs. male): the size (cephalothorax length, CL), body biomass (dry weight and organic matter), biochemical composition (proteins, glucose, and lipids), and fatty acid profiles (FAs). The results indicate that the CL of new juveniles was similar between the sexes, while the dry weight and organic matter presented significant differences, with higher values in new juvenile females (NJF) than new juvenile males (NJM). Similarly, the NJF had a higher content of proteins, glucose, and lipids than NJM. The FAs also showed significant differences between the sexes; the NJF had a higher content than NJM in all fatty acid classes (i.e., saturated, monounsaturated, and polyunsaturated), with the FAs DHA (C22:6n-3), EPA (C20:5n-3), oleic (C18:1n-9), palmitic (C16:0), and eicosatrienoic (C20:3n-3) significantly contributing to the differentiation of FA profiles between the sexes. All of the aforementioned differences among the multiple variables of the bioenergetic condition can indicate biochemical adaptations in the storage capacity of energy reserves, particularly among NJF that must support the high energy cost of the first reproductive event (characterized by embryo production and incubation), which occurs during the austral winter, a period predominated by cold-water temperatures and scarce food availability in the habitat. Overall, our findings have significant implications in fishery management models. In this case, defining the bioenergetic condition of the new juvenile squat lobsters can aid in predicting the density and stability of the adult population, which is exploited by commercial fisheries.
期刊介绍:
Marine Ecology publishes original contributions on the structure and dynamics of marine benthic and pelagic ecosystems, communities and populations, and on the critical links between ecology and the evolution of marine organisms.
The journal prioritizes contributions elucidating fundamental aspects of species interaction and adaptation to the environment through integration of information from various organizational levels (molecules to ecosystems) and different disciplines (molecular biology, genetics, biochemistry, physiology, marine biology, natural history, geography, oceanography, palaeontology and modelling) as viewed from an ecological perspective. The journal also focuses on population genetic processes, evolution of life histories, morphological traits and behaviour, historical ecology and biogeography, macro-ecology and seascape ecology, palaeo-ecological reconstruction, and ecological changes due to introduction of new biota, human pressure or environmental change.
Most applied marine science, including fisheries biology, aquaculture, natural-products chemistry, toxicology, and local pollution studies lie outside the scope of the journal. Papers should address ecological questions that would be of interest to a worldwide readership of ecologists; papers of mostly local interest, including descriptions of flora and fauna, taxonomic descriptions, and range extensions will not be considered.