Single-exposure X-ray phase imaging microscopy with a grating interferometer.

IF 2.4 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION Journal of Synchrotron Radiation Pub Date : 2022-05-01 Epub Date: 2022-03-15 DOI:10.1107/S160057752200193X
Andreas Wolf, Bernhard Akstaller, Silvia Cipiccia, Silja Flenner, Johannes Hagemann, Veronika Ludwig, Pascal Meyer, Andreas Schropp, Max Schuster, Maria Seifert, Mareike Weule, Thilo Michel, Gisela Anton, Stefan Funk
{"title":"Single-exposure X-ray phase imaging microscopy with a grating interferometer.","authors":"Andreas Wolf, Bernhard Akstaller, Silvia Cipiccia, Silja Flenner, Johannes Hagemann, Veronika Ludwig, Pascal Meyer, Andreas Schropp, Max Schuster, Maria Seifert, Mareike Weule, Thilo Michel, Gisela Anton, Stefan Funk","doi":"10.1107/S160057752200193X","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of hard X-ray free-electron lasers enables nanoscopic X-ray imaging with sub-picosecond temporal resolution. X-ray grating interferometry offers a phase-sensitive full-field imaging technique where the phase retrieval can be carried out from a single exposure alone. Thus, the method is attractive for imaging applications at X-ray free-electron lasers where intrinsic pulse-to-pulse fluctuations pose a major challenge. In this work, the single-exposure phase imaging capabilities of grating interferometry are characterized by an implementation at the I13-1 beamline of Diamond Light Source (Oxfordshire, UK). For comparison purposes, propagation-based phase contrast imaging was also performed at the same instrument. The characterization is carried out in terms of the quantitativeness and the contrast-to-noise ratio of the phase reconstructions as well as via the achievable spatial resolution. By using a statistical image reconstruction scheme, previous limitations of grating interferometry regarding the spatial resolution can be mitigated as well as the experimental applicability of the technique.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 1","pages":"794-806"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S160057752200193X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of hard X-ray free-electron lasers enables nanoscopic X-ray imaging with sub-picosecond temporal resolution. X-ray grating interferometry offers a phase-sensitive full-field imaging technique where the phase retrieval can be carried out from a single exposure alone. Thus, the method is attractive for imaging applications at X-ray free-electron lasers where intrinsic pulse-to-pulse fluctuations pose a major challenge. In this work, the single-exposure phase imaging capabilities of grating interferometry are characterized by an implementation at the I13-1 beamline of Diamond Light Source (Oxfordshire, UK). For comparison purposes, propagation-based phase contrast imaging was also performed at the same instrument. The characterization is carried out in terms of the quantitativeness and the contrast-to-noise ratio of the phase reconstructions as well as via the achievable spatial resolution. By using a statistical image reconstruction scheme, previous limitations of grating interferometry regarding the spatial resolution can be mitigated as well as the experimental applicability of the technique.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光栅干涉仪单曝光X射线相位成像显微镜
这项工作提出并扩展了x射线光栅干涉术的单曝光相位成像能力,如在钻石光源的光束线I13-1上的实现所证明的那样。这一结果对未来x射线自由电子激光器的单脉冲成像实验具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
12.00%
发文量
289
审稿时长
4-8 weeks
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes Development of dual-beamline photoelectron momentum microscopy for valence orbital analysis Measuring magnetic hysteresis curves with polarized soft X-ray resonant reflectivity High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources Iterative Bragg peak removal on X-ray absorption spectra with automatic intensity correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1