Haji Muhammad Umer Memon, Mahboob Ali Sial, H. Bux
{"title":"Evaluation of Bread Wheat Genotypes for Water Stress Tolerance Using Agronomic Traits","authors":"Haji Muhammad Umer Memon, Mahboob Ali Sial, H. Bux","doi":"10.5586/aa.751","DOIUrl":null,"url":null,"abstract":"\n Water stress is one of the major environmental constraints on wheat grain yield worldwide. One way to overcome this limitation is to evolve genetically stress-tolerant wheat genotypes that produce sustainable grain yields in water-scarce conditions. A field experiment was carried out to investigate the genetic diversity of 34 advanced wheat genotypes (\n Triticum aestivum\n L.) and two commercial check varieties (Khirman and TD-1) for grain yield and yield-associated agronomic traits in moisture stress (MS) and well-watered (WW) conditions. Plants were grown in residual moisture in rice fallow land in rainfed conditions without supplementary irrigation, i.e., MS conditions, while two rounds of irrigations were applied for the WW control conditions. Analysis of variance indicated a highly significant (\n p\n < 0.05) variation among genotypes for all the observed agronomic traits in MS and WW conditions. In the MS group, the exotic line IBWSN-1010, mutant line MASR-64, and doubled haploid line DH-12/7 produced the highest grain yield compared to all the contesting wheat genotypes, including check varieties. Grain yield per plot was positively correlated (\n r\n = 0.93) with biological yield per plot in MS conditions. Principal component analysis showed total variations of 21.9%, 20.4%, and 10.1% explained by PC-1, PC-2, and PC-3 in MS, and 22.9%, 14.8%, and 12.1% for PC-1, PC-2, and PC-3 in WW conditions. Our study provides valid information for the selection of newly evolved wheat genotypes and will be useful in future breeding programs.","PeriodicalId":6907,"journal":{"name":"Acta Agrobotanica","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agrobotanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5586/aa.751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Water stress is one of the major environmental constraints on wheat grain yield worldwide. One way to overcome this limitation is to evolve genetically stress-tolerant wheat genotypes that produce sustainable grain yields in water-scarce conditions. A field experiment was carried out to investigate the genetic diversity of 34 advanced wheat genotypes (
Triticum aestivum
L.) and two commercial check varieties (Khirman and TD-1) for grain yield and yield-associated agronomic traits in moisture stress (MS) and well-watered (WW) conditions. Plants were grown in residual moisture in rice fallow land in rainfed conditions without supplementary irrigation, i.e., MS conditions, while two rounds of irrigations were applied for the WW control conditions. Analysis of variance indicated a highly significant (
p
< 0.05) variation among genotypes for all the observed agronomic traits in MS and WW conditions. In the MS group, the exotic line IBWSN-1010, mutant line MASR-64, and doubled haploid line DH-12/7 produced the highest grain yield compared to all the contesting wheat genotypes, including check varieties. Grain yield per plot was positively correlated (
r
= 0.93) with biological yield per plot in MS conditions. Principal component analysis showed total variations of 21.9%, 20.4%, and 10.1% explained by PC-1, PC-2, and PC-3 in MS, and 22.9%, 14.8%, and 12.1% for PC-1, PC-2, and PC-3 in WW conditions. Our study provides valid information for the selection of newly evolved wheat genotypes and will be useful in future breeding programs.
Acta AgrobotanicaAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.90
自引率
25.00%
发文量
8
审稿时长
16 weeks
期刊介绍:
The Acta Agrobotanica publishes mainly significant, original research papers presenting the results new to the biology of cultivable or wild plants accompanying crops. The submissions dedicated particularly to flora and phytocenoses of anthropogenically transformed areas, bee pastures, nectariferous and polleniferous taxa, plant-pollinator relationships, urban and rural habitats for entomofauna, cultivated plants, weeds, aerobiology, plant pathogens and parasites are encouraged and accepted. Besides the original research papers, authors may submit short communications and reviews. The journal also publishes the invited papers in case of new developments in plant science. All submissions must be written in good English, which is solely a responsibility of the authors.