Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-11-08 DOI:10.1088/1748-605X/ab49e2
Le Jin, Wenwen Zhao, Bo Ren, Lei Li, Xiaoqing Hu, Xin Zhang, Q. Cai, Y. Ao, Xiaoping Yang
{"title":"Osteochondral tissue regenerated via a strategy by stacking pre-differentiated BMSC sheet on fibrous mesh in a gradient","authors":"Le Jin, Wenwen Zhao, Bo Ren, Lei Li, Xiaoqing Hu, Xin Zhang, Q. Cai, Y. Ao, Xiaoping Yang","doi":"10.1088/1748-605X/ab49e2","DOIUrl":null,"url":null,"abstract":"The reconstruction of osteochondral tissue remains a challenging task in clinical therapy because of its heterogeneous structure. The best way to face the challenge is to develop a biomimetic construct to mimic the multilayered gradient from cartilage, to calcified cartilage and subchondral bone. In this study, bone marrow mesenchymal stromal cells (BMSCs) were cultured on electrospun fibrous meshes and cell sheets were incubated. The fibrous meshes were composed of 50% poly(L-lactide) and 50% gelatin, displaying excellent biocompatibility, cell affinity and degradability. Differentiation of BMSC sheets on fibrous meshes was induced chondrogenically or osteogenically. In particular, the BMSC sheets were able to be efficiently induced differentiating towards calcified cartilage by using a 1:1 (v/v) mixed medium of chondrogenic and osteogenic inductive media. Thus, a gradient 3D construct was built by stacking the differently pre-differentiated cell/mesh complexes layer by layer from top to bottom to mimic the cartilage-to-bone transition. With this gradient construct being implanted in the rabbit knee osteochondral defect, it was confirmed that it could promote the tissue regeneration with intact cartilage layer formation in comparison with the multilayered construct without a gradient. The strategy of using properly pre-differentiated BMSC sheet on fibrous mesh to build the osteochondral interface was thus suggested as being feasible and effective in mimicking its hierarchical complexity, and favored the repairing of injured joint cartilage.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab49e2","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab49e2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 14

Abstract

The reconstruction of osteochondral tissue remains a challenging task in clinical therapy because of its heterogeneous structure. The best way to face the challenge is to develop a biomimetic construct to mimic the multilayered gradient from cartilage, to calcified cartilage and subchondral bone. In this study, bone marrow mesenchymal stromal cells (BMSCs) were cultured on electrospun fibrous meshes and cell sheets were incubated. The fibrous meshes were composed of 50% poly(L-lactide) and 50% gelatin, displaying excellent biocompatibility, cell affinity and degradability. Differentiation of BMSC sheets on fibrous meshes was induced chondrogenically or osteogenically. In particular, the BMSC sheets were able to be efficiently induced differentiating towards calcified cartilage by using a 1:1 (v/v) mixed medium of chondrogenic and osteogenic inductive media. Thus, a gradient 3D construct was built by stacking the differently pre-differentiated cell/mesh complexes layer by layer from top to bottom to mimic the cartilage-to-bone transition. With this gradient construct being implanted in the rabbit knee osteochondral defect, it was confirmed that it could promote the tissue regeneration with intact cartilage layer formation in comparison with the multilayered construct without a gradient. The strategy of using properly pre-differentiated BMSC sheet on fibrous mesh to build the osteochondral interface was thus suggested as being feasible and effective in mimicking its hierarchical complexity, and favored the repairing of injured joint cartilage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过纤维网梯度叠加预分化骨髓间充质干细胞片的策略再生骨软骨组织
骨软骨组织的重建由于其异质性结构,在临床治疗中仍然是一项具有挑战性的任务。面对挑战的最好方法是开发一种仿生结构,模拟从软骨到钙化软骨和软骨下骨的多层梯度。在本研究中,骨髓间充质基质细胞(BMSC)在电纺纤维网上培养,并孵育细胞片。纤维网由50%聚L-丙交酯和50%明胶组成,具有良好的生物相容性、细胞亲和性和降解性。BMSC片在纤维网上的分化是软骨性或成骨性诱导的。特别地,通过使用软骨形成介质和成骨诱导介质的1:1(v/v)混合介质,能够有效地诱导BMSC片向钙化软骨分化。因此,通过从上到下逐层堆叠不同的预分化细胞/网状物来构建梯度3D构建体,以模拟软骨到骨的过渡。通过将这种梯度构建体植入兔膝骨软骨缺损,证实了与没有梯度的多层构建体相比,它可以促进组织再生,形成完整的软骨层。因此,在纤维网上使用适当的预分化BMSC片来构建骨软骨界面的策略被认为是可行和有效的,可以模拟其层次复杂性,并有利于损伤关节软骨的修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1