首页 > 最新文献

Biomedical materials最新文献

英文 中文
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. 用于开放性伤口愈合的具有抗菌止血和清除自由基特性的低肿胀藻酸盐水凝胶。
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1088/1748-605x/ad792c
Xuebin Ma,Xiao Fu,Jianwen Meng,Hongmei Li,Fang Wang,Huarong Shao,Yang Liu,Fei Liu,Daizhou Zhang,Bo Chi,Jinlai Miao
Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acid δ-lactone/CaCO3 system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ε-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling "armor" on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 hours of in vitro release, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.
开发具有抗菌、抗氧化和低肿胀特性的低成本、生物相容性水凝胶敷料对于加速伤口愈合非常重要。在这里,我们利用 D-(+)-gluconic acid δ-内酯/CaCO3体系制造了一种多功能藻酸盐水凝胶敷料。透明质酸和单宁酸(TA)的加入使海藻酸水凝胶具有抗活性氧(ROS)、止血和促进伤口愈合的特性。值得注意的是,将海藻酸盐水凝胶浸泡在聚ε-赖氨酸(EPL)水溶液中,可使海藻酸盐水凝胶与 EPL 通过静电作用发生二交联,在表面形成类似 "盔甲 "的致密网络。这种简单的一步浸泡策略使海藻酸盐水凝胶具有抗菌和抗膨胀特性。膨胀测试表明,完全膨胀的多功能海藻酸盐水凝胶的横截面积仅为初始尺寸的 1.3 倍,从而防止了因过度膨胀而导致的伤口过度扩张。体外释放 5 小时后,TA 的累积释放量仅为 7%,表明其具有明显的缓释特性。此外,从清除 2,2-二苯基-1-苦基肼自由基的结果来看,这种集成海藻酸盐水凝胶系统具有显著的消除 ROS 的能力。小鼠全厚皮肤伤口修复实验和愈合部位的组织学分析表明,所开发的多功能海藻酸盐水凝胶对细胞外基质的形成和促进伤口闭合具有显著效果。总之,本研究提出了一种经济、方便的多功能水凝胶敷料,在治疗开放性伤口方面具有很大的临床应用潜力。
{"title":"A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing.","authors":"Xuebin Ma,Xiao Fu,Jianwen Meng,Hongmei Li,Fang Wang,Huarong Shao,Yang Liu,Fei Liu,Daizhou Zhang,Bo Chi,Jinlai Miao","doi":"10.1088/1748-605x/ad792c","DOIUrl":"https://doi.org/10.1088/1748-605x/ad792c","url":null,"abstract":"Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acid δ-lactone/CaCO3 system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ε-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling \"armor\" on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 hours of in vitro release, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. 评估基于 Carbothane™ 3575A 的电纺血管移植物在体外和体内的特性。
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1088/1748-605x/ad792d
Vera Sergeevna Chernonosova,Olesia Osipova,Zhou Nuankai,Inna Shundrina,Ivan S Murashov,Yurii Larichev,Andrey A Karpenko,Pavel P Laktionov
Bioengineered vascular grafts have emerged as a promising alternative to the treatment of damaged or occlusive vessels. It is thought that polyurethane-based scaffolds possess suitable hemocompatibility and biomechanics comparable to those of normal blood vessels. In this study, we investigated the properties of electrospun scaffolds comprising various blends of biostable polycarbonate-based polyurethane (Carbothane™ 3575A) and gelatin. Scaffolds were characterized by scanning electron microscopy, infra-red spectroscopy, small-angle X-ray scattering, stress-loading tests, and interactions with primary human cells and blood. Data from in vitro experiments demonstrated that a scaffold produced from a blend of 5% Carbothane™ 3575A and 10% gelatin has proven to be a suitable material for fabricating a small-diameter vascular graft. A comparative in vivo study of such vascular grafts and ePTFE grafts implanted in the abdominal aorta of Wistar rats was performed. The data of intravital study and histological examination indicated that Carbothane-based electrospun grafts outclass ePTFE grafts and represent a promising device for preclinical studies to satisfy vascular surgery needs.
生物工程血管移植物已成为治疗受损或闭塞血管的一种有前途的替代方法。据认为,聚氨酯基支架具有适当的血液相容性和与正常血管相当的生物力学性能。在这项研究中,我们研究了电纺支架的特性,其中包括各种生物稳定性聚碳酸酯基聚氨酯(Carbothane™ 3575A)和明胶的混合物。通过扫描电子显微镜、红外光谱、小角 X 射线散射、应力加载测试以及与原代人体细胞和血液的相互作用对支架进行了表征。体外实验数据表明,由 5% Carbothane™ 3575A 和 10% 明胶混合制成的支架已被证明是制造小直径血管移植物的合适材料。对这种血管移植物和植入 Wistar 大鼠腹主动脉的 ePTFE 移植物进行了体内对比研究。体内观察研究和组织学检查数据表明,基于硫化卡硼烷的电纺移植物优于聚四氟乙烯移植物,是临床前研究满足血管外科需求的一种有前途的装置。
{"title":"Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo.","authors":"Vera Sergeevna Chernonosova,Olesia Osipova,Zhou Nuankai,Inna Shundrina,Ivan S Murashov,Yurii Larichev,Andrey A Karpenko,Pavel P Laktionov","doi":"10.1088/1748-605x/ad792d","DOIUrl":"https://doi.org/10.1088/1748-605x/ad792d","url":null,"abstract":"Bioengineered vascular grafts have emerged as a promising alternative to the treatment of damaged or occlusive vessels. It is thought that polyurethane-based scaffolds possess suitable hemocompatibility and biomechanics comparable to those of normal blood vessels. In this study, we investigated the properties of electrospun scaffolds comprising various blends of biostable polycarbonate-based polyurethane (Carbothane™ 3575A) and gelatin. Scaffolds were characterized by scanning electron microscopy, infra-red spectroscopy, small-angle X-ray scattering, stress-loading tests, and interactions with primary human cells and blood. Data from in vitro experiments demonstrated that a scaffold produced from a blend of 5% Carbothane™ 3575A and 10% gelatin has proven to be a suitable material for fabricating a small-diameter vascular graft. A comparative in vivo study of such vascular grafts and ePTFE grafts implanted in the abdominal aorta of Wistar rats was performed. The data of intravital study and histological examination indicated that Carbothane-based electrospun grafts outclass ePTFE grafts and represent a promising device for preclinical studies to satisfy vascular surgery needs.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"13 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. 人骨肉瘤细胞在为骨组织工程设计的具有开放通道结构的生物陶瓷移植物中的迁移和存留。
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-09-10 DOI: 10.1088/1748-605x/ad792b
Gayathry G,Francis Boniface Fernandez,Harikrishna Varma,Manoj Komath
The microstructure of a porous bioceramic bone graft, especially the pore architecture, plays a crucial role in the performance of the graft. Conventional bioceramic grafts typically feature a random, closed-pore structure, limiting biological activity to the periphery of the graft. This can lead to delay in full integration with the host site. Bioceramic forms with open through pores can perform better because their inner regions are accessible for natural bone remodelling. This study explores the influence of open through pores in a bioceramic graft on the migration and retention of the local cells in vitro, which will correlate to the rate of healing in vivo. Hydroxyapatite (HA) ceramic forms with aligned channels were fabricated using slip casting technique, employing sacrificial fibers. The sorption characteristics across the graft were evaluated using HOS cell line. Seven-day cultures showed viable cells within the channels, confirmed by live/dead assay, SEM analysis, and cytoskeletal staining, indicating successful cell colonization. The channel architecture effectively enhances cell migration and retention throughout its entire structure, suggesting potential applications in bone tissue engineering based on the results obtained.
多孔生物陶瓷骨移植物的微观结构,尤其是孔隙结构,对移植物的性能起着至关重要的作用。传统的生物陶瓷移植物通常具有随机、封闭的孔隙结构,将生物活性限制在移植物的外围。这可能导致与宿主部位完全融合的延迟。而具有开放式通孔的生物陶瓷可以发挥更好的作用,因为其内部区域可以进行自然骨重塑。本研究探讨了生物陶瓷移植物中开放式通孔对体外局部细胞迁移和保留的影响,这将与体内愈合率相关联。利用滑模铸造技术和牺牲纤维制造了具有排列整齐的通道的羟基磷灰石(HA)陶瓷。使用 HOS 细胞系对接枝的吸附特性进行了评估。经活体/死体检测、扫描电镜分析和细胞骨架染色证实,培养七天后,通道内的细胞存活,表明细胞成功定植。这种通道结构有效地增强了细胞在其整个结构中的迁移和保留,根据所获得的结果,它在骨组织工程中具有潜在的应用前景。
{"title":"Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering.","authors":"Gayathry G,Francis Boniface Fernandez,Harikrishna Varma,Manoj Komath","doi":"10.1088/1748-605x/ad792b","DOIUrl":"https://doi.org/10.1088/1748-605x/ad792b","url":null,"abstract":"The microstructure of a porous bioceramic bone graft, especially the pore architecture, plays a crucial role in the performance of the graft. Conventional bioceramic grafts typically feature a random, closed-pore structure, limiting biological activity to the periphery of the graft. This can lead to delay in full integration with the host site. Bioceramic forms with open through pores can perform better because their inner regions are accessible for natural bone remodelling. This study explores the influence of open through pores in a bioceramic graft on the migration and retention of the local cells in vitro, which will correlate to the rate of healing in vivo. Hydroxyapatite (HA) ceramic forms with aligned channels were fabricated using slip casting technique, employing sacrificial fibers. The sorption characteristics across the graft were evaluated using HOS cell line. Seven-day cultures showed viable cells within the channels, confirmed by live/dead assay, SEM analysis, and cytoskeletal staining, indicating successful cell colonization. The channel architecture effectively enhances cell migration and retention throughout its entire structure, suggesting potential applications in bone tissue engineering based on the results obtained.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"6 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142207189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles 通过选择性替代磁铁矿纳米颗粒提高生物活性 SiO2-CaO-Na2O-P2O5 玻璃陶瓷的感应加热能力
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1088/1748-605x/ad51c0
Nitu, Rushikesh Fopase, Lalit Mohan Pandey, Jyoti Prasad Borah and Ananthakrishnan Srinivasan
Magnetic bioactive glass-ceramics with compositions of 37SiO2–24.5CaO–24.5Na2O–6P2O5–8Fe3O4 (MGCS), 45SiO2–16.5CaO–24.5Na2O–6P2O5–8Fe3O4 (MGCC) and 45SiO2–24.5CaO–16.5Na2O–6P2O5–8Fe3O4 (MGCN) were synthesized by sol–gel route. These compositions were derived by substituting 8 wt.% magnetite (Fe3O4) nanoparticles for SiO2, CaO and Na2O, respectively, in the bioactive glass-ceramic of composition 45SiO2–24.5CaO–24.5Na2O–6P2O5. The sol–gel derived powders were heat treated at 550 °C for 1 h to ensure optimal amounts of magnetite, combeite and sodium nitrate phases. All the heat treated samples were found to be magnetic, bioactive and non-toxic to MG-63 osteoblast cells. However, the induction heating response of MGCC was better than that of MGCS and MGCN. Notably, MGCC outperformed the commercially available ferrofluid FluidMag-CT, thereby establishing itself as a superior thermoseed for magnetic hyperthermia treatment of cancer.
通过溶胶-凝胶路线合成了成分为 37SiO2-24.5CaO-24.5Na2O-6P2O5-8Fe3O4 (MGCS)、45SiO2-16.5CaO-24.5Na2O-6P2O5-8Fe3O4 (MGCC) 和 45SiO2-24.5CaO-16.5Na2O-6P2O5-8Fe3O4 (MGCN) 的磁性生物活性玻璃陶瓷。这些成分是通过在成分为 45SiO2-24.5CaO-24.5Na2O-6P2O5 的生物活性玻璃陶瓷中分别用 8 重量%的磁铁矿(Fe3O4)纳米颗粒代替 SiO2、CaO 和 Na2O 而得到的。溶胶-凝胶法制备的粉末在 550 °C 下热处理 1 小时,以确保磁铁矿、泡沸石和硝酸钠相的最佳含量。所有热处理样品都具有磁性、生物活性,并且对 MG-63 成骨细胞无毒。不过,MGCC 的诱导加热反应优于 MGCS 和 MGCN。值得注意的是,MGCC 的性能优于市售的铁流体 FluidMag-CT,从而使其成为磁性热疗治疗癌症的优质热源。
{"title":"Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles","authors":"Nitu, Rushikesh Fopase, Lalit Mohan Pandey, Jyoti Prasad Borah and Ananthakrishnan Srinivasan","doi":"10.1088/1748-605x/ad51c0","DOIUrl":"https://doi.org/10.1088/1748-605x/ad51c0","url":null,"abstract":"Magnetic bioactive glass-ceramics with compositions of 37SiO2–24.5CaO–24.5Na2O–6P2O5–8Fe3O4 (MGCS), 45SiO2–16.5CaO–24.5Na2O–6P2O5–8Fe3O4 (MGCC) and 45SiO2–24.5CaO–16.5Na2O–6P2O5–8Fe3O4 (MGCN) were synthesized by sol–gel route. These compositions were derived by substituting 8 wt.% magnetite (Fe3O4) nanoparticles for SiO2, CaO and Na2O, respectively, in the bioactive glass-ceramic of composition 45SiO2–24.5CaO–24.5Na2O–6P2O5. The sol–gel derived powders were heat treated at 550 °C for 1 h to ensure optimal amounts of magnetite, combeite and sodium nitrate phases. All the heat treated samples were found to be magnetic, bioactive and non-toxic to MG-63 osteoblast cells. However, the induction heating response of MGCC was better than that of MGCS and MGCN. Notably, MGCC outperformed the commercially available ferrofluid FluidMag-CT, thereby establishing itself as a superior thermoseed for magnetic hyperthermia treatment of cancer.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"9 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141503618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells 大蒜植物化学物质功能化金纳米粒子在三阴性乳腺癌细胞中的抗增殖功效和作用机制
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-28 DOI: 10.1088/1748-605x/ad3ff9
Kimaya Meher, Harshad Paithankar, Ramakrishna V Hosur and Manu Lopus
Fabrication of gold nanoparticles (GNPs) with phytochemicals is an emerging green nanotechnology approach with therapeutic implications. Garlic, known for its culinary and medicinal properties, has been extensively investigated for its anticancer properties. Here, we report a method to substantially enhance the antiproliferative potency of garlic by functionalizing its phytochemicals to GNPs and demonstrate a possible mechanism of action of these nanoparticles in the triple-negative breast cancer cell line, MDA-MB-231. Garlic gold nanoparticles (As-GNPs) were synthesized using garlic extract (As-EX) and gold chloride and characterized using a variety of spectroscopy techniques, and transmission electron microscopy (TEM). Compared to As-EX, which has a negligible effect on the viability of the cells, As-GNPs inhibited cell viability with an IC50 of 0.310 ± 0.04 mg ml−1 and strongly inhibited the clonogenic and migratory propensities of these cells. As indicated by TEM, the As-GNPs entered the cells via endocytosis and dispersed in the cellular milieu. Since tubulin, the protein involved in cell division, is a verified target for several antiproliferative drugs, we next examined whether the As-GNPs interact with this protein. The As-GNPs showed concentration-dependent binding to purified tubulin, slightly but consistently perturbing its secondary helical integritywithout grossly damaging the tertiary structure of the protein or the net polymer mass of the microtubules, as indicated by a tryptophan-quenching assay, far UV-circular dichroism spectroscopy, anilinonaphthalene sulfonate-binding assay, and polymer mass analysis, respectively. In cells, As-GNPs killed the cancer cells without cell cycle arrest, as evidenced by flow cytometry.
用植物化学物质制造金纳米粒子(GNPs)是一种具有治疗意义的新兴绿色纳米技术方法。大蒜因其烹饪和药用特性而闻名,其抗癌特性已被广泛研究。在此,我们报告了一种通过将大蒜的植物化学物质功能化到 GNPs 来大幅提高大蒜抗增殖效力的方法,并展示了这些纳米粒子在三阴性乳腺癌细胞系 MDA-MB-231 中的可能作用机制。研究人员使用大蒜提取物(As-EX)和氯化金合成了大蒜金纳米粒子(As-GNPs),并使用多种光谱技术和透射电子显微镜(TEM)对其进行了表征。与对细胞活力影响微乎其微的 As-EX 相比,As-GNPs 抑制细胞活力的 IC50 为 0.310 ± 0.04 mg ml-1,并能强烈抑制这些细胞的克隆和迁移倾向。正如 TEM 所示,As-GNPs 通过内吞作用进入细胞,并在细胞环境中分散。由于参与细胞分裂的微管蛋白是几种抗增殖药物的验证靶标,我们接下来研究了 As-GNPs 是否与这种蛋白相互作用。色氨酸淬灭试验、远紫外-圆二色光谱、苯胺萘磺酸盐结合试验和聚合物质量分析表明,As-GNPs 与纯化的微管蛋白的结合具有浓度依赖性,会轻微但持续地扰乱其二级螺旋的完整性,而不会严重破坏蛋白质的三级结构或微管的净聚合物质量。流式细胞仪显示,在细胞中,As-GNPs 能杀死癌细胞,而不会导致细胞周期停滞。
{"title":"Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells","authors":"Kimaya Meher, Harshad Paithankar, Ramakrishna V Hosur and Manu Lopus","doi":"10.1088/1748-605x/ad3ff9","DOIUrl":"https://doi.org/10.1088/1748-605x/ad3ff9","url":null,"abstract":"Fabrication of gold nanoparticles (GNPs) with phytochemicals is an emerging green nanotechnology approach with therapeutic implications. Garlic, known for its culinary and medicinal properties, has been extensively investigated for its anticancer properties. Here, we report a method to substantially enhance the antiproliferative potency of garlic by functionalizing its phytochemicals to GNPs and demonstrate a possible mechanism of action of these nanoparticles in the triple-negative breast cancer cell line, MDA-MB-231. Garlic gold nanoparticles (As-GNPs) were synthesized using garlic extract (As-EX) and gold chloride and characterized using a variety of spectroscopy techniques, and transmission electron microscopy (TEM). Compared to As-EX, which has a negligible effect on the viability of the cells, As-GNPs inhibited cell viability with an IC50 of 0.310 ± 0.04 mg ml−1 and strongly inhibited the clonogenic and migratory propensities of these cells. As indicated by TEM, the As-GNPs entered the cells via endocytosis and dispersed in the cellular milieu. Since tubulin, the protein involved in cell division, is a verified target for several antiproliferative drugs, we next examined whether the As-GNPs interact with this protein. The As-GNPs showed concentration-dependent binding to purified tubulin, slightly but consistently perturbing its secondary helical integritywithout grossly damaging the tertiary structure of the protein or the net polymer mass of the microtubules, as indicated by a tryptophan-quenching assay, far UV-circular dichroism spectroscopy, anilinonaphthalene sulfonate-binding assay, and polymer mass analysis, respectively. In cells, As-GNPs killed the cancer cells without cell cycle arrest, as evidenced by flow cytometry.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"22 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and characterization of chitosan/polyvinyl alcohol antibacterial sponge materials 壳聚糖/聚乙烯醇抗菌海绵材料的制备与表征
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-17 DOI: 10.1088/1748-605x/ad3c87
Xue Chen, Jing Xu, Alidha Gafur, Baoyu Chen, Yibo Han, Liyuan Zhang, Lingwen Kong, Guixue Wang and Zhiyi Ye
This study utilized the freeze-drying method to create a chitosan (CS) and polyvinyl alcohol (PVA) sponge. To enhance its antibacterial properties, curcumin and nano silver (Cur@Ag) were added for synergistic antibacterial. After adding curcumin and nano silver, the mechanical properties of the composite sponge dressing (CS-PVA-Cur@Ag) were improved. The porosity of the composite sponge dressing was closed to 80%, which was helpful for drug release, and it had good water absorption and water retention rate. The nano silver diameter was 50–80 nm, which was optimal for killing bacteria. Antibacterial tests used Escherichia coli and Staphylococcus aureus demonstrated that little nano silver was required to eliminate bacteria. Finally, in the rat full-thickness skin wound model, the composite sponge dressing can promote wound healing in a short time. In summary, CS-PVA-Cur@Ag wound dressing could protect from bacterial infection and accelerate wound healing. Thus, it had high potential application value for wound dressing.
本研究采用冷冻干燥法制造壳聚糖(CS)和聚乙烯醇(PVA)海绵。为增强其抗菌性能,添加了姜黄素和纳米银(Cur@Ag)以实现协同抗菌。添加姜黄素和纳米银后,复合海绵敷料(CS-PVA-Cur@Ag)的机械性能得到了改善。复合海绵敷料的孔隙率达到 80%,有利于药物的释放,同时具有良好的吸水性和保水率。纳米银的直径为 50-80 nm,是杀灭细菌的最佳直径。用大肠杆菌和金黄色葡萄球菌进行的抗菌测试表明,只需少量纳米银就能消灭细菌。最后,在大鼠全厚皮肤伤口模型中,复合海绵敷料能在短时间内促进伤口愈合。总之,CS-PVA-Cur@Ag 伤口敷料可以防止细菌感染并加速伤口愈合。因此,它在伤口敷料方面具有很高的潜在应用价值。
{"title":"Preparation and characterization of chitosan/polyvinyl alcohol antibacterial sponge materials","authors":"Xue Chen, Jing Xu, Alidha Gafur, Baoyu Chen, Yibo Han, Liyuan Zhang, Lingwen Kong, Guixue Wang and Zhiyi Ye","doi":"10.1088/1748-605x/ad3c87","DOIUrl":"https://doi.org/10.1088/1748-605x/ad3c87","url":null,"abstract":"This study utilized the freeze-drying method to create a chitosan (CS) and polyvinyl alcohol (PVA) sponge. To enhance its antibacterial properties, curcumin and nano silver (Cur@Ag) were added for synergistic antibacterial. After adding curcumin and nano silver, the mechanical properties of the composite sponge dressing (CS-PVA-Cur@Ag) were improved. The porosity of the composite sponge dressing was closed to 80%, which was helpful for drug release, and it had good water absorption and water retention rate. The nano silver diameter was 50–80 nm, which was optimal for killing bacteria. Antibacterial tests used Escherichia coli and Staphylococcus aureus demonstrated that little nano silver was required to eliminate bacteria. Finally, in the rat full-thickness skin wound model, the composite sponge dressing can promote wound healing in a short time. In summary, CS-PVA-Cur@Ag wound dressing could protect from bacterial infection and accelerate wound healing. Thus, it had high potential application value for wound dressing.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"279 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer 表面工程纳米金刚石:癌症诊断和治疗生物医学应用中的机理干预
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-15 DOI: 10.1088/1748-605x/ad3abb
Tanima Dey, Anushikha Ghosh, Arka Sanyal, Chelsea Josephine Charles, Sahas Pokharel, Lakshmi Nair, Manjari Singh, Santanu Kaity, Velayutham Ravichandiran, Kulwinder Kaur, Subhadeep Roy
In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for their in vivo and in vitro interventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.
就生物医学工具而言,纳米金刚石(ND)是一种最新的创新技术。它们的尺寸通常在 4 到 100 纳米之间。纳米金刚石的生产方法多种多样,并以其物理韧性、耐久性和化学稳定性而著称。研究表明,表面修饰和功能化对纳米材料的光学和电学特性有重大影响。因此,NDs 的表面功能基团可应用于多种领域,包括给药、基因递送、癌症治疗的免疫疗法和诊断癌症的生物成像。此外,其生物相容性也是其体内和体外干预的关键必要条件。本综述深入探讨了这些方面,并重点介绍了最近在围绕癌症诊断和治疗的各种生物医学应用的玖龙纸张表面改性策略方面取得的进展。此外,还讨论了其临床转化的前景。
{"title":"Surface engineered nanodiamonds: mechanistic intervention in biomedical applications for diagnosis and treatment of cancer","authors":"Tanima Dey, Anushikha Ghosh, Arka Sanyal, Chelsea Josephine Charles, Sahas Pokharel, Lakshmi Nair, Manjari Singh, Santanu Kaity, Velayutham Ravichandiran, Kulwinder Kaur, Subhadeep Roy","doi":"10.1088/1748-605x/ad3abb","DOIUrl":"https://doi.org/10.1088/1748-605x/ad3abb","url":null,"abstract":"In terms of biomedical tools, nanodiamonds (ND) are a more recent innovation. Their size typically ranges between 4 to 100 nm. ND are produced via a variety of methods and are known for their physical toughness, durability, and chemical stability. Studies have revealed that surface modifications and functionalization have a significant influence on the optical and electrical properties of the nanomaterial. Consequently, surface functional groups of NDs have applications in a variety of domains, including drug administration, gene delivery, immunotherapy for cancer treatment, and bio-imaging to diagnose cancer. Additionally, their biocompatibility is a critical requisite for their <italic toggle=\"yes\">in vivo</italic> and <italic toggle=\"yes\">in vitro</italic> interventions. This review delves into these aspects and focuses on the recent advances in surface modification strategies of NDs for various biomedical applications surrounding cancer diagnosis and treatment. Furthermore, the prognosis of its clinical translation has also been discussed.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"42 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of novel bioadhesive chitosan film loaded with bimetallic gold-silver nanoparticles for antibiofilm and wound healing activity 负载双金属金-银纳米粒子的新型生物粘附壳聚糖膜的设计及其抗生物膜和伤口愈合活性
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2023-02-02 DOI: 10.1088/1748-605X/acb89b
C. Singh, A. K. Mehata, V. ., P. Tiwari, Aseem Setia, Ankit Malik, Sanjeev K Singh, Rashmi M. Tilak, M. S. Muthu
Microbial infections and antibiotic resistance are among the leading causes of morbidity and mortality worldwide. The bimetallic chitosan (CS)-capped gold-silver nanoparticles (CS-AuAg-NPs) were prepared by the seeded growth synthesis technique. The nanoparticles were optimized for particle size (PS), zeta potential (ZP) and antibacterial activity by Box–Behnken design at three levels and three factors. The developed CS-AuAg-NPs were polydispersed with mean hydrodynamic PS in the range of 55 – 289 nm and ZP ranges from +8.53 mV to +38.6 mV. The optimized CS-AuAg-NPs found to have a minimum inhibitory concentration and minimal bactericidal concentration of 1.625 ± 0.68 and 3.25 ± 0.74 µg ml−1 towards multidrug resistant (MDR) Staphylococcus aureus ATCC 25923 (MDR AT) and 3.25 ± 0.93 and 3.25 ± 0.86 µg ml−1 towards MDR S. aureus clinical isolate MDR1695 (MDR CI) strain, respectively. The CS-AuAg-NPs were much more effective against MDR AT and MDR CI compared to clindamycin standard. The live/dead assay of clinical isolates strain demonstrated significant reduction of bacterial cells ∼67.52 folds compared to control group in 12 h. The hemolysis study suggested that CS-AuAg-NPs were non-hemolytic and safer for application in the wound. Furthermore, CS-AuAg-NPs were distributed in the CS film, which showed 87% wound recovery after 7 d in mice model. Hence, we concluded that CS-AuAg-NPs was safer and more effective against MDR bacteria and capable of skin regeneration in the infected wound.
微生物感染和抗生素耐药性是全世界发病率和死亡率的主要原因之一。采用种子生长合成技术制备了双金属壳聚糖(CS)包覆的金-银纳米粒子(CS- auag - nps)。采用Box-Behnken设计,对纳米颗粒粒径(PS)、ζ电位(ZP)和抗菌活性进行了3个层次、3个因素的优化。制备的CS-AuAg-NPs是多分散的,平均水动力PS范围为55 ~ 289 nm, ZP范围为+8.53 mV ~ +38.6 mV。优化后的CS-AuAg-NPs对耐多药金黄色葡萄球菌ATCC 25923 (MDR AT)的最小抑菌浓度为1.625±0.68µg ml - 1,对耐多药金黄色葡萄球菌临床分离株MDR1695 (MDR CI)的最小抑菌浓度为3.25±0.93µg ml - 1,对耐多药金黄色葡萄球菌ATCC 25923 (MDR AT)的最小杀菌浓度为3.25±0.74µg ml - 1。与克林霉素标准相比,CS-AuAg-NPs对耐多药AT和耐多药CI更有效。临床分离菌株的活/死试验显示,与对照组相比,12小时内细菌细胞显著减少约67.52倍。溶血研究表明,CS-AuAg-NPs无溶血作用,应用于伤口更安全。此外,CS- auag - nps分布在CS膜中,在小鼠模型中,7 d后伤口恢复率为87%。因此,我们得出结论,CS-AuAg-NPs对耐多药细菌更安全,更有效,并且能够在感染伤口中进行皮肤再生。
{"title":"Design of novel bioadhesive chitosan film loaded with bimetallic gold-silver nanoparticles for antibiofilm and wound healing activity","authors":"C. Singh, A. K. Mehata, V. ., P. Tiwari, Aseem Setia, Ankit Malik, Sanjeev K Singh, Rashmi M. Tilak, M. S. Muthu","doi":"10.1088/1748-605X/acb89b","DOIUrl":"https://doi.org/10.1088/1748-605X/acb89b","url":null,"abstract":"Microbial infections and antibiotic resistance are among the leading causes of morbidity and mortality worldwide. The bimetallic chitosan (CS)-capped gold-silver nanoparticles (CS-AuAg-NPs) were prepared by the seeded growth synthesis technique. The nanoparticles were optimized for particle size (PS), zeta potential (ZP) and antibacterial activity by Box–Behnken design at three levels and three factors. The developed CS-AuAg-NPs were polydispersed with mean hydrodynamic PS in the range of 55 – 289 nm and ZP ranges from +8.53 mV to +38.6 mV. The optimized CS-AuAg-NPs found to have a minimum inhibitory concentration and minimal bactericidal concentration of 1.625 ± 0.68 and 3.25 ± 0.74 µg ml−1 towards multidrug resistant (MDR) Staphylococcus aureus ATCC 25923 (MDR AT) and 3.25 ± 0.93 and 3.25 ± 0.86 µg ml−1 towards MDR S. aureus clinical isolate MDR1695 (MDR CI) strain, respectively. The CS-AuAg-NPs were much more effective against MDR AT and MDR CI compared to clindamycin standard. The live/dead assay of clinical isolates strain demonstrated significant reduction of bacterial cells ∼67.52 folds compared to control group in 12 h. The hemolysis study suggested that CS-AuAg-NPs were non-hemolytic and safer for application in the wound. Furthermore, CS-AuAg-NPs were distributed in the CS film, which showed 87% wound recovery after 7 d in mice model. Hence, we concluded that CS-AuAg-NPs was safer and more effective against MDR bacteria and capable of skin regeneration in the infected wound.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":"18 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42351654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer 3D打印关节软骨组织工程生物可吸收支架:纯聚己内酯(PCL)与聚乳酸-b-乙二醇(PLA-PEG)嵌段共聚物的比较研究
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2022-06-14 DOI: 10.1088/1748-605X/ac78b7
Uzuri Urtaza, O. Guaresti, Izar Gorroñogoitia, Ana Zubiarrain-Laserna, Emma Muiños‐López, Froilán Granero-Moltó, JM Lamo de Espinosa, T. López-Martínez, M. Mazo, F. Prósper, A. Zaldua, J. Anakabe
This work identifies and describes different material-scaffold geometry combinations for cartilage tissue engineering (CTE). Previously reported potentially interesting scaffold geometries were tuned and printed using bioresorbable polycaprolactone and poly(lactide-b-ethylene) block copolymer. Medical grades of both polymers were 3D printed with fused filament fabrication technology within an ISO 7 classified cleanroom. Resulting scaffolds were then optically, mechanically and biologically tested. Results indicated that a few material-scaffold geometry combinations present potential for excellent cell viability as well as for an enhance of the chondrogenic properties of the cells, hence suggesting their suitability for CTE applications.
这项工作确定并描述了软骨组织工程(CTE)的不同材料-支架几何组合。先前报道的可能有趣的支架几何形状是使用生物可吸收的聚己内酯和聚(丙交酯-乙乙烯)嵌段共聚物进行调整和打印的。这两种聚合物的医用级都是在ISO 7级洁净室中使用熔丝制造技术进行3D打印的。然后对得到的支架进行光学、机械和生物学测试。结果表明,一些材料-支架的几何组合具有优异的细胞活力和增强细胞软骨性质的潜力,因此表明它们适用于CTE应用。
{"title":"3D printed bioresorbable scaffolds for articular cartilage tissue engineering: a comparative study between neat polycaprolactone (PCL) and poly(lactide-b-ethylene glycol) (PLA-PEG) block copolymer","authors":"Uzuri Urtaza, O. Guaresti, Izar Gorroñogoitia, Ana Zubiarrain-Laserna, Emma Muiños‐López, Froilán Granero-Moltó, JM Lamo de Espinosa, T. López-Martínez, M. Mazo, F. Prósper, A. Zaldua, J. Anakabe","doi":"10.1088/1748-605X/ac78b7","DOIUrl":"https://doi.org/10.1088/1748-605X/ac78b7","url":null,"abstract":"This work identifies and describes different material-scaffold geometry combinations for cartilage tissue engineering (CTE). Previously reported potentially interesting scaffold geometries were tuned and printed using bioresorbable polycaprolactone and poly(lactide-b-ethylene) block copolymer. Medical grades of both polymers were 3D printed with fused filament fabrication technology within an ISO 7 classified cleanroom. Resulting scaffolds were then optically, mechanically and biologically tested. Results indicated that a few material-scaffold geometry combinations present potential for excellent cell viability as well as for an enhance of the chondrogenic properties of the cells, hence suggesting their suitability for CTE applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42097688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing 用于添加剂组织制造的可调明胶-透明质酸双醛/甲基丙烯酰明胶互穿聚合物网络水凝胶
IF 4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2022-06-14 DOI: 10.1088/1748-605X/ac78b8
R. Anand, Mehdi Salar Amoli, An-Sofie Huysecom, P. Amorim, Hannah Agten, L. Geris, V. Bloemen
Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff’s polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 °C) compared to gold standard GelMA (27 °C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 d of 3D in vitro culture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications.
甲基丙烯酰明胶(GelMA)具有可调的物理性能和固有的生物活性,是一种多用途的生物打印材料。GelMA的生物打印经常遇到挑战,例如由于较高的甲基丙烯酰基取代度和室温下较长的物理凝胶化时间,GelMA油墨的粘度较低。在本研究中,以明胶-透明质酸二醛(Gel HDA)Schiff’s聚合物和100%甲基丙烯酰胺取代的GelMA为原料,通过挤出生物打印制备了可调互穿聚合物网络(IPN)水凝胶。温度扫描流变学测量显示,与金标准GelMA(27°C)相比,IPN(30°C)的溶胶-凝胶转变温度更高。此外,为了确定IPN水凝胶的可调性,通过组合不同比例的Gel HDA和GelMA制备了几个IPN样品,获得了20.6±2.48 KPa至116.7±14.80 KPa的压缩模量。我们的结果表明,可以通过调节GelMA和Gel-HDA的比例来调节室温下的机械性能和可印刷性。为了评估细胞对该材料的反应,将MC3T3-E1小鼠前成骨细胞包埋在水凝胶中并进行3D打印,在3D体外培养10天后显示出优异的细胞活力和增殖,使IPN成为制造组织工程应用的3D构建体的有趣的生物墨水。
{"title":"A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing","authors":"R. Anand, Mehdi Salar Amoli, An-Sofie Huysecom, P. Amorim, Hannah Agten, L. Geris, V. Bloemen","doi":"10.1088/1748-605X/ac78b8","DOIUrl":"https://doi.org/10.1088/1748-605X/ac78b8","url":null,"abstract":"Methacryloyl gelatin (GelMA) is a versatile material for bioprinting because of its tunable physical properties and inherent bioactivity. Bioprinting of GelMA is often met with challenges such as lower viscosity of GelMA inks due to higher methacryloyl substitution and longer physical gelation time at room temperature. In this study, a tunable interpenetrating polymer network (IPN) hydrogel was prepared from gelatin-hyaluronan dialdehyde (Gel-HDA) Schiff’s polymer, and 100% methacrylamide substituted GelMA for biofabrication through extrusion based bioprinting. Temperature sweep rheology measurements show a higher sol-gel transition temperature for IPN (30 °C) compared to gold standard GelMA (27 °C). Furthermore, to determine the tunability of the IPN hydrogel, several IPN samples were prepared by combining different ratios of Gel-HDA and GelMA achieving a compressive modulus ranging from 20.6 ± 2.48 KPa to 116.7 ± 14.80 KPa. Our results showed that the mechanical properties and printability at room temperature could be tuned by adjusting the ratios of GelMA and Gel-HDA. To evaluate cell response to the material, MC3T3-E1 mouse pre-osteoblast cells were embedded in hydrogels and 3D-printed, demonstrating excellent cell viability and proliferation after 10 d of 3D in vitro culture, making the IPN an interesting bioink for the fabrication of 3D constructs for tissue engineering applications.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":4.0,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42965941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Biomedical materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1