{"title":"Unravelling the effects of ibuprofen-acetaminophen infused copper-bioglass towards the creation of root canal sealant","authors":"C. S, Riju Chandran, Ramya R, D. D., B. S","doi":"10.1088/1748-605X/ac5b83","DOIUrl":null,"url":null,"abstract":"Impact towards the tuneable characteristics of bioactive glasses (BAGs) has been explored; as there is no root canal sealant till date with ideal characteristics competent enough to manoeuvre the perplexing root canal architecture. Combeite, calcite and traces of cuprorivaite crystalline phases were validated for material formation, in which Cu 2P (XPS) peak authenticating the presence of copper in bioglass network (Cu-BAG). Spherical and platelet-like morphologies were observed and the grain size of Cu-BAG (∼100 nm) was lesser as compared to BAG (∼1 µm). These particle distributions impacted the porosity, and dominant non-bridging oxygens in Cu-BAG influences ionic dissolution, which subsequently enhanced the mineralization. These bioactive materials were loaded with acetaminophen and ibuprofen, corresponding organic moieties was confirmed through Fourier transform infra-red. These drugs loaded bioactive materials exhibited tremendous anti-inflammatory and anti-microbial behaviour with better sealing ability. Drug loaded bioglass paste filled in biomechanically prepared root canal was estimated for sealing potential, mineralization, micro leakage, and fracture resistance properties. Hydroxyl apatite growth was noted on the sealants, flower like protuberance confirmed the sealing potential of the prepared material. Bioglass exhibited promising characteristics required in a root canal sealant. This investigation is a step further towards tailoring the properties of bioactive materials as promising candidates in root canal obturation and thereof.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ac5b83","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Impact towards the tuneable characteristics of bioactive glasses (BAGs) has been explored; as there is no root canal sealant till date with ideal characteristics competent enough to manoeuvre the perplexing root canal architecture. Combeite, calcite and traces of cuprorivaite crystalline phases were validated for material formation, in which Cu 2P (XPS) peak authenticating the presence of copper in bioglass network (Cu-BAG). Spherical and platelet-like morphologies were observed and the grain size of Cu-BAG (∼100 nm) was lesser as compared to BAG (∼1 µm). These particle distributions impacted the porosity, and dominant non-bridging oxygens in Cu-BAG influences ionic dissolution, which subsequently enhanced the mineralization. These bioactive materials were loaded with acetaminophen and ibuprofen, corresponding organic moieties was confirmed through Fourier transform infra-red. These drugs loaded bioactive materials exhibited tremendous anti-inflammatory and anti-microbial behaviour with better sealing ability. Drug loaded bioglass paste filled in biomechanically prepared root canal was estimated for sealing potential, mineralization, micro leakage, and fracture resistance properties. Hydroxyl apatite growth was noted on the sealants, flower like protuberance confirmed the sealing potential of the prepared material. Bioglass exhibited promising characteristics required in a root canal sealant. This investigation is a step further towards tailoring the properties of bioactive materials as promising candidates in root canal obturation and thereof.
期刊介绍:
The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare.
Typical areas of interest include (but are not limited to):
-Synthesis/characterization of biomedical materials-
Nature-inspired synthesis/biomineralization of biomedical materials-
In vitro/in vivo performance of biomedical materials-
Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning-
Microfluidic systems (including disease models): fabrication, testing & translational applications-
Tissue engineering/regenerative medicine-
Interaction of molecules/cells with materials-
Effects of biomaterials on stem cell behaviour-
Growth factors/genes/cells incorporated into biomedical materials-
Biophysical cues/biocompatibility pathways in biomedical materials performance-
Clinical applications of biomedical materials for cell therapies in disease (cancer etc)-
Nanomedicine, nanotoxicology and nanopathology-
Pharmacokinetic considerations in drug delivery systems-
Risks of contrast media in imaging systems-
Biosafety aspects of gene delivery agents-
Preclinical and clinical performance of implantable biomedical materials-
Translational and regulatory matters