{"title":"Software-Defined 1550-nm Full-Fiber Doppler Lidar for Contactless Vibration Measurement of High Voltage Power Equipment","authors":"X. Guan, C. Lv, Guoyan Zheng, Z. Pan, K. Cai","doi":"10.13164/re.2023.0391","DOIUrl":null,"url":null,"abstract":". In this work, a 1550-nm full-fiber Doppler lidar via software-defined platform is built to realize flexible and low-cost contactless vibration measurement of high-voltage power equipment. A 1550-nm fiber layout is designed to generate optical interference between vibration signal and carrier wave. The reflected vibration signal is collected by an optical transceiver and the carrier wave is generated by an acousto-optic modulator (AOM). The optical beat signal is collected by a balanced detector (BD) then sent into a general software defined radio (SDR) receiver. By GNU developing platform, the target mechanical vibration signal is demodulated and several flexible functions such as speed-acceleration trans, harmonic component analysis and fault diagnosis is realized. Performance of Doppler lidar is first verified on mechanical vibration source by PZT vibration actuator, results show that the designed lidar could retrieve 50 Hz–20 kHz mechanical vibration signals within the working distance is up to 20 m. Further case application scenarios on the power transformer and gas-insulated switchgear (GIS) are also conducted to verify the feasibility of proposed lidar.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0391","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
. In this work, a 1550-nm full-fiber Doppler lidar via software-defined platform is built to realize flexible and low-cost contactless vibration measurement of high-voltage power equipment. A 1550-nm fiber layout is designed to generate optical interference between vibration signal and carrier wave. The reflected vibration signal is collected by an optical transceiver and the carrier wave is generated by an acousto-optic modulator (AOM). The optical beat signal is collected by a balanced detector (BD) then sent into a general software defined radio (SDR) receiver. By GNU developing platform, the target mechanical vibration signal is demodulated and several flexible functions such as speed-acceleration trans, harmonic component analysis and fault diagnosis is realized. Performance of Doppler lidar is first verified on mechanical vibration source by PZT vibration actuator, results show that the designed lidar could retrieve 50 Hz–20 kHz mechanical vibration signals within the working distance is up to 20 m. Further case application scenarios on the power transformer and gas-insulated switchgear (GIS) are also conducted to verify the feasibility of proposed lidar.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.