L. Madeira, M. Caracanhas, F. E. A. Santos, V. Bagnato
{"title":"Quantum Turbulence in Quantum Gases","authors":"L. Madeira, M. Caracanhas, F. E. A. Santos, V. Bagnato","doi":"10.1146/annurev-conmatphys-031119-050821","DOIUrl":null,"url":null,"abstract":"Turbulence is characterized by a large number of degrees of freedom, distributed over several length scales, that result in a disordered state of a fluid. The field of quantum turbulence deals with the manifestation of turbulence in quantum fluids, such as liquid helium and ultracold gases. We review, from both experimental and theoretical points of view, advances in quantum turbulence focusing on atomic Bose–Einstein condensates. We also explore the similarities and differences between quantum and classical turbulence. Last, we present challenges and possible directions for the field. We summarize questions that are being asked in recent works, which need to be answered in order to understand fundamental properties of quantum turbulence, and we provide some possible ways of investigating them.","PeriodicalId":7925,"journal":{"name":"Annual Review of Condensed Matter Physics","volume":"1 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2019-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-conmatphys-031119-050821","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-conmatphys-031119-050821","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 33
Abstract
Turbulence is characterized by a large number of degrees of freedom, distributed over several length scales, that result in a disordered state of a fluid. The field of quantum turbulence deals with the manifestation of turbulence in quantum fluids, such as liquid helium and ultracold gases. We review, from both experimental and theoretical points of view, advances in quantum turbulence focusing on atomic Bose–Einstein condensates. We also explore the similarities and differences between quantum and classical turbulence. Last, we present challenges and possible directions for the field. We summarize questions that are being asked in recent works, which need to be answered in order to understand fundamental properties of quantum turbulence, and we provide some possible ways of investigating them.
期刊介绍:
Since its inception in 2010, the Annual Review of Condensed Matter Physics has been chronicling significant advancements in the field and its related subjects. By highlighting recent developments and offering critical evaluations, the journal actively contributes to the ongoing discourse in condensed matter physics. The latest volume of the journal has transitioned from gated access to open access, facilitated by Annual Reviews' Subscribe to Open initiative. Under this program, all articles are now published under a CC BY license, ensuring broader accessibility and dissemination of knowledge.