Yukiyasu Noguchi, M. Humblet, Y. Furushima, Shohei Ito, T. Maki
{"title":"Wide-Area Three-Dimensional Imaging of Mesophotic Coral Reefs Using a Low-Cost AUV","authors":"Yukiyasu Noguchi, M. Humblet, Y. Furushima, Shohei Ito, T. Maki","doi":"10.4031/mtsj.56.4.4","DOIUrl":null,"url":null,"abstract":"Abstract Surveys and monitoring are essential to study the biology and ecology of coral reefs in order to understand the reasons behind reef demise and recovery. However, mesophotic coral ecosystems (MCEs) remain largely unknown compared to their shallow counterparts because\n it is difficult to observe the seafloor below 30 m depths. Here, we propose a seafloor observation method using a low-cost autonomous underwater vehicle (AUV). This method was developed to allow many people to easily perform underwater observations of MCEs, and is also applicable to general\n seafloor surveys, such as underwater artificial structures, hydrothermal vent fields, etc. The method possesses three important attributes to achieve effective surveys. First, it can be applied in highly rugged terrains and enables the AUV to track omnidirectional surfaces at high speed (Max.\n ~1 m/s). Second, it can produce a reliable three-dimensional (3D) image of the seafloor based on a depth sensor. Third, it can be used to estimate the flow velocity field. The proposed method was tested by using the AUV HATTORI-2, which is a lightweight, one-man portable AUV equipped\n with commercial off-the-shelf sensors. Our study area is the Sekisei Lagoon in the South Ryukyus, which represents the largest coral reef complex in Japan. The method enabled us not only to obtain a wide and high-definition 3D image of mesophotic coral reefs that captures detailed characteristics\n of marine habitats but also to acquire environmental data, such as flow velocity field and seawater temperature, spatially and temporally aligned with the 3D image.","PeriodicalId":49878,"journal":{"name":"Marine Technology Society Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Technology Society Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4031/mtsj.56.4.4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Surveys and monitoring are essential to study the biology and ecology of coral reefs in order to understand the reasons behind reef demise and recovery. However, mesophotic coral ecosystems (MCEs) remain largely unknown compared to their shallow counterparts because
it is difficult to observe the seafloor below 30 m depths. Here, we propose a seafloor observation method using a low-cost autonomous underwater vehicle (AUV). This method was developed to allow many people to easily perform underwater observations of MCEs, and is also applicable to general
seafloor surveys, such as underwater artificial structures, hydrothermal vent fields, etc. The method possesses three important attributes to achieve effective surveys. First, it can be applied in highly rugged terrains and enables the AUV to track omnidirectional surfaces at high speed (Max.
~1 m/s). Second, it can produce a reliable three-dimensional (3D) image of the seafloor based on a depth sensor. Third, it can be used to estimate the flow velocity field. The proposed method was tested by using the AUV HATTORI-2, which is a lightweight, one-man portable AUV equipped
with commercial off-the-shelf sensors. Our study area is the Sekisei Lagoon in the South Ryukyus, which represents the largest coral reef complex in Japan. The method enabled us not only to obtain a wide and high-definition 3D image of mesophotic coral reefs that captures detailed characteristics
of marine habitats but also to acquire environmental data, such as flow velocity field and seawater temperature, spatially and temporally aligned with the 3D image.
期刊介绍:
The Marine Technology Society Journal is the flagship publication of the Marine Technology Society. It publishes the highest caliber, peer-reviewed papers, six times a year, on subjects of interest to the society: marine technology, ocean science, marine policy, and education.