{"title":"Evolution and action mechanism of relative negative pressure zone in spiral groove gas face seal for aero-engine","authors":"Hui Li, Guoqi Li, Hao Liu, Ang Li, Xin'gen Lu","doi":"10.1115/1.4063197","DOIUrl":null,"url":null,"abstract":"\n As an advanced sealing technology, the application of gas face seal in aero-engine is few, if possible, lower specific fuel consumption, higher thrust-weight ratio, and effective secondary flow control at minimal cost would be brought. A Relative Negative Pressure Zone (RNPZ) was found in the spiral groove gas face seal, and the evolution and action mechanism of RNPZ was investigated in detail, which may promote the above application. Three film thicknesses of spiral groove gas face seals at different rotational speeds and inlet pressures were numerically compared to obtain the pressure field in the groove area and the formation of RNPZ. Then, the radial and circumferential velocities in the groove were calculated to quantify the impact of the obstruction effect, viscous pumping, and shear effect, which revealed the evolution mechanism of the RNPZ stage by stage. At last, the action mechanism of RNPZ was clarified through the hydrodynamic performance analysis. It is found that the pressure field evolution in the gas face seal is in stage three under the high rotational speed and low inlet pressure conditions in an aero-engine. Under the same film thickness, RNPZ can suppress leakage to a certain extent in stage two, while in stage three, it increases the opening force and stiffness-leakage ratio. This work can provide theory and data to help with the subsequent optimization design of gas-face seals for aero-engine.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063197","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As an advanced sealing technology, the application of gas face seal in aero-engine is few, if possible, lower specific fuel consumption, higher thrust-weight ratio, and effective secondary flow control at minimal cost would be brought. A Relative Negative Pressure Zone (RNPZ) was found in the spiral groove gas face seal, and the evolution and action mechanism of RNPZ was investigated in detail, which may promote the above application. Three film thicknesses of spiral groove gas face seals at different rotational speeds and inlet pressures were numerically compared to obtain the pressure field in the groove area and the formation of RNPZ. Then, the radial and circumferential velocities in the groove were calculated to quantify the impact of the obstruction effect, viscous pumping, and shear effect, which revealed the evolution mechanism of the RNPZ stage by stage. At last, the action mechanism of RNPZ was clarified through the hydrodynamic performance analysis. It is found that the pressure field evolution in the gas face seal is in stage three under the high rotational speed and low inlet pressure conditions in an aero-engine. Under the same film thickness, RNPZ can suppress leakage to a certain extent in stage two, while in stage three, it increases the opening force and stiffness-leakage ratio. This work can provide theory and data to help with the subsequent optimization design of gas-face seals for aero-engine.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints