Critical parameters controlling wettability in hydrogen underground storage - An analytical study

Q3 Materials Science JCIS open Pub Date : 2022-12-01 DOI:10.1016/j.jciso.2022.100063
Farzaneh Nazari , Rouhi Farajzadeh , Vahid J. Niasar
{"title":"Critical parameters controlling wettability in hydrogen underground storage - An analytical study","authors":"Farzaneh Nazari ,&nbsp;Rouhi Farajzadeh ,&nbsp;Vahid J. Niasar","doi":"10.1016/j.jciso.2022.100063","DOIUrl":null,"url":null,"abstract":"<div><h3>Hypothesis</h3><p>The large-scale implementation of hydrogen economy requires immense storage spaces to facilitate the periodic storage/production cycles. Extensive modelling of hydrogen transport in porous media is required to comprehend the hydrogen-induced complexities prior to storage to avoid energy loss. Wettability of hydrogen-brine-rock systems influence flow properties (e.g. capillary pressure and relative permeability curves) and the residual saturations, which are all essential for subsurface hydrogen systems.</p></div><div><h3>Model</h3><p>This study aims to understand which parameters critically control the contact angle for hydrogen-brine-rock systems using the surface force analysis following the DLVO theory and sensitivity analysis. Furthermore, the effect of roughness is studied using the Cassie-Baxter model.</p></div><div><h3>Findings</h3><p>Our results reveal no considerable difference between H<sub>2</sub> and other gases such as N<sub>2</sub>. Besides, the inclusion of roughness highly affects the observed apparent contact angles, and even lead to water-repelling features. It was observed that contact angle does not vary significantly with variations of surface charge and density at high salinity, which is representative for reservoir conditions. Based on the analysis, it is speculated that the influence of roughness on contact angle becomes significant at low water saturation (i.e. high capillary pressure).</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X22000216/pdfft?md5=92c5b695290b9f4cec2bff6de00a5075&pid=1-s2.0-S2666934X22000216-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X22000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

Hypothesis

The large-scale implementation of hydrogen economy requires immense storage spaces to facilitate the periodic storage/production cycles. Extensive modelling of hydrogen transport in porous media is required to comprehend the hydrogen-induced complexities prior to storage to avoid energy loss. Wettability of hydrogen-brine-rock systems influence flow properties (e.g. capillary pressure and relative permeability curves) and the residual saturations, which are all essential for subsurface hydrogen systems.

Model

This study aims to understand which parameters critically control the contact angle for hydrogen-brine-rock systems using the surface force analysis following the DLVO theory and sensitivity analysis. Furthermore, the effect of roughness is studied using the Cassie-Baxter model.

Findings

Our results reveal no considerable difference between H2 and other gases such as N2. Besides, the inclusion of roughness highly affects the observed apparent contact angles, and even lead to water-repelling features. It was observed that contact angle does not vary significantly with variations of surface charge and density at high salinity, which is representative for reservoir conditions. Based on the analysis, it is speculated that the influence of roughness on contact angle becomes significant at low water saturation (i.e. high capillary pressure).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
控制地下储氢库润湿性的关键参数分析研究
假设氢经济的大规模实施需要巨大的储存空间,以促进周期性的储存/生产周期。为了在储存之前理解氢引起的复杂性,以避免能量损失,需要对多孔介质中的氢传输进行广泛的建模。氢-盐水-岩石体系的润湿性影响着流体性质(如毛细压力和相对渗透率曲线)和残余饱和度,这些都是地下氢体系所必需的。本研究旨在利用DLVO理论和敏感性分析的表面力分析,了解哪些参数对氢-盐水-岩石体系的接触角起关键控制作用。此外,利用Cassie-Baxter模型研究了粗糙度的影响。结果表明H2和其他气体(如N2)之间没有明显的差异。此外,粗糙度对观察到的视接触角有很大影响,甚至会产生拒水特性。观察到,在高矿化度条件下,接触角随表面电荷和密度的变化不明显,这对储层条件具有代表性。根据分析推测,粗糙度对接触角的影响在低含水饱和度(即毛管压力高)时更为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
期刊最新文献
Green synthesis of silver nanoparticles: A comprehensive review of methods, influencing factors, and applications Phosphorene: A novel nanomaterial revolutionizing biomedicine Fabrication and evaluation of PVDF membranes modified with cellulose and cellulose esters from peanut (Arachis hypogea L.) shell for application in methylene blue filtration Polymer-grafted materials as surface-engineered adsorbents for water purification Emergent patterns in shape-asymmetric Quincke rollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1