首页 > 最新文献

JCIS open最新文献

英文 中文
Polymer-grafted materials as surface-engineered adsorbents for water purification 聚合物接枝材料作为用于水净化的表面工程吸附剂
Q3 Materials Science Pub Date : 2024-08-08 DOI: 10.1016/j.jciso.2024.100122

This review aims to explore recent advancements in polymer-grafted materials that have emerged as effective adsorbents for the removal of contaminants from wastewater. The most significant environmental issues affecting public health are the presence of dyes, heavy metals, and metalloids in wastewater discharged by various industries. Unfortunately, traditional techniques for treating wastewater are incapable of removing dyes and heavy metals. Due to enhanced capabilities, larger surface areas, greater stability, adjustable properties, and cost-effectiveness, polymer-grafted nanomaterials (PGNs) have attracted the attention of researchers for water purification. Surface engineering of materials with the use of polymers improves greatly their colloidal stability and pollutant adsorption capacity. This study investigates different parameters such as adsorption capacity, pH, and duration in recently reported papers where polymer-grafted adsorbents are developed. The review concludes by offering an overview of recent advancements in the field and proposing potential avenues for future research on related topics.

本综述旨在探讨聚合物接枝材料的最新进展,这些材料已成为去除废水中污染物的有效吸附剂。影响公众健康的最重要环境问题是各行各业排放的废水中存在染料、重金属和类金属。遗憾的是,传统的废水处理技术无法去除染料和重金属。聚合物接枝纳米材料(PGNs)具有更强的能力、更大的表面积、更高的稳定性、可调节的特性和成本效益,因此在水净化方面吸引了研究人员的关注。利用聚合物对材料进行表面工程处理可大大提高其胶体稳定性和污染物吸附能力。本研究调查了最近报道的开发聚合物接枝吸附剂的论文中的不同参数,如吸附容量、pH 值和持续时间。综述最后概述了该领域的最新进展,并提出了未来相关主题研究的潜在途径。
{"title":"Polymer-grafted materials as surface-engineered adsorbents for water purification","authors":"","doi":"10.1016/j.jciso.2024.100122","DOIUrl":"10.1016/j.jciso.2024.100122","url":null,"abstract":"<div><p>This review aims to explore recent advancements in polymer-grafted materials that have emerged as effective adsorbents for the removal of contaminants from wastewater. The most significant environmental issues affecting public health are the presence of dyes, heavy metals, and metalloids in wastewater discharged by various industries. Unfortunately, traditional techniques for treating wastewater are incapable of removing dyes and heavy metals. Due to enhanced capabilities, larger surface areas, greater stability, adjustable properties, and cost-effectiveness, polymer-grafted nanomaterials (PGNs) have attracted the attention of researchers for water purification. Surface engineering of materials with the use of polymers improves greatly their colloidal stability and pollutant adsorption capacity. This study investigates different parameters such as adsorption capacity, pH, and duration in recently reported papers where polymer-grafted adsorbents are developed. The review concludes by offering an overview of recent advancements in the field and proposing potential avenues for future research on related topics.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000229/pdfft?md5=9fd5a38da833812878ad1cff233d550c&pid=1-s2.0-S2666934X24000229-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141978309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emergent patterns in shape-asymmetric Quincke rollers 形状不对称昆克滚筒中的新兴模式
Q3 Materials Science Pub Date : 2024-07-14 DOI: 10.1016/j.jciso.2024.100121

This study investigates the Quincke rolling phenomenon of snowman-shaped colloidal particles. These chiral rollers exhibit individual and collective dynamic states that depend upon the population and driving field strength. In addition to the previously identified dynamic states, such as spinning and vortex states, we identify the standing and bounded motion of the particles. The bounded motion involves the confined orbiting of particles around the center of mass due to hydrodynamic interactions at low particle area fractions. Our findings provide valuable insights into the behavior of active systems and the fabrication of active materials, emphasizing emergent order and adaptability as key guiding principles.

本研究探讨了雪人形胶体粒子的昆克滚动现象。这些手性滚动体表现出个体和集体的动态状态,这些状态取决于种群和驱动场强。除了之前确定的动态状态(如旋转和涡旋状态)之外,我们还确定了粒子的静止和有界运动。有界运动包括粒子在低粒子面积分数时由于流体动力学相互作用而围绕质量中心的受限轨道运动。我们的研究结果为活性系统的行为和活性材料的制造提供了宝贵的见解,强调了新兴秩序和适应性是关键的指导原则。
{"title":"Emergent patterns in shape-asymmetric Quincke rollers","authors":"","doi":"10.1016/j.jciso.2024.100121","DOIUrl":"10.1016/j.jciso.2024.100121","url":null,"abstract":"<div><p>This study investigates the Quincke rolling phenomenon of snowman-shaped colloidal particles. These chiral rollers exhibit individual and collective dynamic states that depend upon the population and driving field strength. In addition to the previously identified dynamic states, such as spinning and vortex states, we identify the standing and bounded motion of the particles. The bounded motion involves the confined orbiting of particles around the center of mass due to hydrodynamic interactions at low particle area fractions. Our findings provide valuable insights into the behavior of active systems and the fabrication of active materials, emphasizing emergent order and adaptability as key guiding principles.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000217/pdfft?md5=6a8e9659996b8aaf58a87de0ca2654cc&pid=1-s2.0-S2666934X24000217-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems 纳米级给药系统中天然蛋白质和大分子纳米载体释放紫杉醇动力学的比较研究
Q3 Materials Science Pub Date : 2024-07-06 DOI: 10.1016/j.jciso.2024.100120
Laxmi Sai Viswanadha , Yashwanth Arcot , Yu-Ting Lin , Mustafa E.S. Akbulut

Understanding the release behaviour of nanodrugs is a crucial step to better assess and control therapeutic outcomes and unfavourable side effects. Herein, we report a systematic study comparing the release kinetics and thermodynamics of paclitaxel (PTX) from supramolecularly assembled sub-micron particles based on natural macromolecules such as zein, whey, casein, bovine serum albumin (BSA) and conventional stabilizers such as pluronic F-127 (poloxamer 407), and β-cyclodextrin (β-CD) to gain insights into the role of carrier chemistry. For this purpose, nanomedicines with statistically indifferent sizes —in the range of 191.0 ± 0.8 nm (BSA) to 243.3 ± 11.6 nm (zein) were prepared (p > 0.05). The zeta potential values ranged from −3.2 ± 1.1 mV (pluronic F-127) to −17.2 ± 1.8 mV (whey) in phosphate buffered saline. The type of nanocarrier significantly influenced the long-term steady-state plateau of the release, resulting in a cumulative release of 70.3 ± 2.0 % of PTX from casein (the highest) and 46.8 ± 4.7 % of PTX from zein (the lowest). Time-resolved release data were analysed with various kinetical models, encompassing zero-order, first-order, Higuchi, Peppas-Sahlin, and Korsmeyer-Peppas kinetics. The analysis revealed that the Korsmeyer-Peppas model best captured the data. For these nanomedicines, the half-life of the encapsulated drugs was found to be 106.4 ± 31.3 h (zein), 4.7 ± 1.2 h (whey), 10.7 ± 1.8 h (pluronic F-127), 6.4 ± 0.9 h (casein), 10.8 ± 3.2 h (β-CD), and 4.0 ± 1.0 h (BSA). TEM characterization revealed differences in the macromolecular arrangement of the active ingredient within these nanocarriers, in addition to the structural differences among the various encapsulating agents. These differences manifested as variations in the internal nanostructures, leading to the creation of distinct microenvironments that could either facilitate or impede the movement of PTX molecules through the encapsulant matrices. In clinical settings, such fine details of nanocarrier design are important: by choosing the most appropriate nanocarrier (or their mixtures), clinicians can fine-tune drug administration to obtain the intended therapeutic window while mitigating the risk of potential negative reactions.

了解纳米药物的释放行为是更好地评估和控制治疗效果及不良副作用的关键一步。在此,我们报告了一项系统研究,比较了紫杉醇(PTX)从基于天然大分子(如玉米蛋白、乳清、酪蛋白、牛血清白蛋白(BSA))和传统稳定剂(如pluronic F-127 (poloxamer 407) 和β-环糊精(β-CD))的超分子组装亚微米颗粒中的释放动力学和热力学,以深入了解载体化学的作用。为此,制备了统计意义上大小不一的纳米药物--从 191.0 ± 0.8 nm(BSA)到 243.3 ± 11.6 nm(玉米蛋白)(p > 0.05)。在磷酸盐缓冲盐水中,zeta 电位值从 -3.2 ± 1.1 mV(pluronic F-127)到 -17.2 ± 1.8 mV(乳清)不等。纳米载体的类型对释放的长期稳态高原有显著影响,结果是酪蛋白(最高)释放了 70.3 ± 2.0 % 的 PTX,玉米蛋白(最低)释放了 46.8 ± 4.7 % 的 PTX。用各种动力学模型(包括零阶、一阶、Higuchi、Peppas-Sahlin 和 Korsmeyer-Peppas 动力学)分析了时间分辨释放数据。分析表明,Korsmeyer-Peppas 模型最能反映数据。对于这些纳米药物,封装药物的半衰期分别为 106.4 ± 31.3 小时(玉米蛋白)、4.7 ± 1.2 小时(乳清)、10.7 ± 1.8 小时(pluronic F-127)、6.4 ± 0.9 小时(酪蛋白)、10.8 ± 3.2 小时(β-CD)和 4.0 ± 1.0 小时(BSA)。TEM 表征揭示了这些纳米载体中活性成分的大分子排列差异,以及各种封装剂之间的结构差异。这些差异表现为内部纳米结构的变化,导致形成不同的微环境,从而促进或阻碍 PTX 分子在封装基质中的移动。在临床环境中,纳米载体设计的这些细节非常重要:通过选择最合适的纳米载体(或它们的混合物),临床医生可以对给药进行微调,以获得预期的治疗窗口期,同时降低潜在不良反应的风险。
{"title":"A comparative investigation of release kinetics of paclitaxel from natural protein and macromolecular nanocarriers in nanoscale drug delivery systems","authors":"Laxmi Sai Viswanadha ,&nbsp;Yashwanth Arcot ,&nbsp;Yu-Ting Lin ,&nbsp;Mustafa E.S. Akbulut","doi":"10.1016/j.jciso.2024.100120","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100120","url":null,"abstract":"<div><p>Understanding the release behaviour of nanodrugs is a crucial step to better assess and control therapeutic outcomes and unfavourable side effects. Herein, we report a systematic study comparing the release kinetics and thermodynamics of paclitaxel (PTX) from supramolecularly assembled sub-micron particles based on natural macromolecules such as zein, whey, casein, bovine serum albumin (BSA) and conventional stabilizers such as pluronic F-127 (poloxamer 407), and β-cyclodextrin (β-CD) to gain insights into the role of carrier chemistry. For this purpose, nanomedicines with statistically indifferent sizes —in the range of 191.0 ± 0.8 nm (BSA) to 243.3 ± 11.6 nm (zein) were prepared (p &gt; 0.05). The zeta potential values ranged from −3.2 ± 1.1 mV (pluronic F-127) to −17.2 ± 1.8 mV (whey) in phosphate buffered saline. The type of nanocarrier significantly influenced the long-term steady-state plateau of the release, resulting in a cumulative release of 70.3 ± 2.0 % of PTX from casein (the highest) and 46.8 ± 4.7 % of PTX from zein (the lowest). Time-resolved release data were analysed with various kinetical models, encompassing zero-order, first-order, Higuchi, Peppas-Sahlin, and Korsmeyer-Peppas kinetics. The analysis revealed that the Korsmeyer-Peppas model best captured the data. For these nanomedicines, the half-life of the encapsulated drugs was found to be 106.4 ± 31.3 h (zein), 4.7 ± 1.2 h (whey), 10.7 ± 1.8 h (pluronic F-127), 6.4 ± 0.9 h (casein), 10.8 ± 3.2 h (β-CD), and 4.0 ± 1.0 h (BSA). TEM characterization revealed differences in the macromolecular arrangement of the active ingredient within these nanocarriers, in addition to the structural differences among the various encapsulating agents. These differences manifested as variations in the internal nanostructures, leading to the creation of distinct microenvironments that could either facilitate or impede the movement of PTX molecules through the encapsulant matrices. In clinical settings, such fine details of nanocarrier design are important: by choosing the most appropriate nanocarrier (or their mixtures), clinicians can fine-tune drug administration to obtain the intended therapeutic window while mitigating the risk of potential negative reactions.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000205/pdfft?md5=7b1c72770a322e806b51b12d21ef725a&pid=1-s2.0-S2666934X24000205-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141606271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The hydroxypropyl methylcellulose-sorbitol thin film containing a coconut shell of liquid smoke for treating oral ulcer 用于治疗口腔溃疡的含有液态烟雾椰壳的羟丙基甲基纤维素-山梨醇薄膜
Q3 Materials Science Pub Date : 2024-06-27 DOI: 10.1016/j.jciso.2024.100119
Meircurius Dwi Condro Surboyo , Dieni Mansur , Winni Langgeng Kuntari , Sesaria Junita Mega Rahma Syahnia , Benni Iskandar , Ira Arundina , Ta-Wei Liu , Ching-Kuo Lee , Diah Savitri Ernawati

This study aimed to develop an hydroxypropyl methylcellulose-sorbitol (HPMC-sorbitol) thin film as a targeted drug delivery system for coconut shell liquid smoke (CSLS) to effectively treat oral ulcers. The HPMC-sorbitol thin film containing CSLS was created using solvent-casting methods. The resulting thin film underwent comprehensive analysis for shrinkage rate, weight, thickness, water absorption rate, swelling, dissolution, and disintegration time. The producible HPMC-sorbitol thin film containing CSLS exhibited a thickness of 34.89 ± 0.55 μm and a weight of 307.58 ± 10.76 mg, containing phenol and 13-octadecenoic acids. Notably, its swelling, disintegration, and dissolution times were approximately 5 min faster than the blank film. In vitro testing on BHK21 and 7F2 cells demonstrated the thin film's ability to maintain cell viability. In an in vivo oral ulcer model, the thin film reduced neutrophil recruitment, increased macrophage recruitment, and fostered fibroblast proliferation. The HPMC-sorbitol thin film containing CSLS emerged as an effective and well-tolerated delivery system for oral ulcer treatment. Its controlled release mechanism, precise dosing, and protective covering characteristics contribute to enhanced therapeutic outcomes, positioning it as a promising candidate for further development in oral ulcer treatment to improve human health.

本研究旨在开发一种羟丙基甲基纤维素-山梨醇(HPMC-山梨醇)薄膜,作为椰壳烟雾剂(CSLS)的靶向给药系统,以有效治疗口腔溃疡。含有 CSLS 的 HPMC-山梨醇薄膜是采用溶剂浇铸法制成的。对所得薄膜的收缩率、重量、厚度、吸水率、膨胀、溶解度和崩解时间进行了综合分析。含有 CSLS 的 HPMC-山梨醇薄膜厚度为 34.89 ± 0.55 μm,重量为 307.58 ± 10.76 mg,其中含有苯酚和 13-十八烯酸。值得注意的是,其溶胀、崩解和溶出时间比空白薄膜快约 5 分钟。对 BHK21 和 7F2 细胞进行的体外测试表明,薄膜能够保持细胞活力。在体内口腔溃疡模型中,薄膜减少了中性粒细胞的募集,增加了巨噬细胞的募集,并促进了成纤维细胞的增殖。含有 CSLS 的 HPMC 山梨醇薄膜是一种有效且耐受性良好的口腔溃疡治疗给药系统。它的控释机制、精确剂量和保护性覆盖特性有助于提高治疗效果,使其有望在口腔溃疡治疗领域得到进一步开发,从而改善人类健康。
{"title":"The hydroxypropyl methylcellulose-sorbitol thin film containing a coconut shell of liquid smoke for treating oral ulcer","authors":"Meircurius Dwi Condro Surboyo ,&nbsp;Dieni Mansur ,&nbsp;Winni Langgeng Kuntari ,&nbsp;Sesaria Junita Mega Rahma Syahnia ,&nbsp;Benni Iskandar ,&nbsp;Ira Arundina ,&nbsp;Ta-Wei Liu ,&nbsp;Ching-Kuo Lee ,&nbsp;Diah Savitri Ernawati","doi":"10.1016/j.jciso.2024.100119","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100119","url":null,"abstract":"<div><p>This study aimed to develop an hydroxypropyl methylcellulose-sorbitol (HPMC-sorbitol) thin film as a targeted drug delivery system for coconut shell liquid smoke (CSLS) to effectively treat oral ulcers. The HPMC-sorbitol thin film containing CSLS was created using solvent-casting methods. The resulting thin film underwent comprehensive analysis for shrinkage rate, weight, thickness, water absorption rate, swelling, dissolution, and disintegration time. The producible HPMC-sorbitol thin film containing CSLS exhibited a thickness of 34.89 ± 0.55 μm and a weight of 307.58 ± 10.76 mg, containing phenol and 13-octadecenoic acids. Notably, its swelling, disintegration, and dissolution times were approximately 5 min faster than the blank film. In vitro testing on BHK21 and 7F2 cells demonstrated the thin film's ability to maintain cell viability. In an in vivo oral ulcer model, the thin film reduced neutrophil recruitment, increased macrophage recruitment, and fostered fibroblast proliferation. The HPMC-sorbitol thin film containing CSLS emerged as an effective and well-tolerated delivery system for oral ulcer treatment. Its controlled release mechanism, precise dosing, and protective covering characteristics contribute to enhanced therapeutic outcomes, positioning it as a promising candidate for further development in oral ulcer treatment to improve human health.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000199/pdfft?md5=b0aae7acad19c04e1995f3996f2c61f3&pid=1-s2.0-S2666934X24000199-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141539479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum chemical modeling of alkane2D monolayer formation on graphene 石墨烯上烷烃 2D 单层形成的量子化学建模
Q3 Materials Science Pub Date : 2024-06-27 DOI: 10.1016/j.jciso.2024.100117
E.S. Kartashynska

The paper presents a quantum chemical approach for assessment of the thermodynamic parameters of association for alkanes CnH2n+2 (n = 6–14) and polyaromatic hydrocarbons (PAH) of the coronene series as model structures of the graphene surface within the framework of semiempirical methods. The enthalpy, entropy and Gibbs energy of formation and binding for alkanes with PAH were calculated using the PM3 and PM6-DH2 methods. It is shown that an adequate description of the interactions in the regarded complexes requires the use of PM6-DH2 method, since it contains corrections for dispersion interactions and hydrogen bonds. The parallel orientation of the alkane molecule relative to the coronene plane is proved to be more energetically preferable than perpendicular one, which is consistent with experimental data.

Intermolecular C–H/π interactions are revealed to be crucial in the 2D film formation of alkanes on graphene/graphite. While interactions between alkane molecules make a destabilizing contribution due to the implementation of energetically unfavorable types of intermolecular CH/HC interactions. This stipulates a threshold chain length of alkanes capable of film formation on the graphene/graphite surface at standard temperature: 14 and 19 carbon atoms for parallel and perpendicular oriented alkanes, respectively. The obtained threshold values of the alkane chain length, as well as the geometric parameters of their orientation in 2D monolayers on the graphene/graphite surface are consistent with available experimental data.

本文介绍了一种量子化学方法,用于在半经验方法框架内评估作为石墨烯表面模型结构的烷烃 CnH2n+2 (n = 6-14)和冠烯系列多芳烃(PAH)的关联热力学参数。使用 PM3 和 PM6-DH2 方法计算了烷烃与 PAH 形成和结合的焓、熵和吉布斯能。结果表明,要充分描述所考虑的复合物中的相互作用,需要使用 PM6-DH2 方法,因为它包含了对分散相互作用和氢键的修正。事实证明,烷烃分子相对于冠烯平面的平行取向比垂直取向在能量上更为可取,这与实验数据一致。而烷烃分子之间的相互作用会破坏其稳定性,因为分子间的 CH/HC 相互作用在能量上是不利的。这就规定了烷烃在标准温度下能在石墨烯/石墨表面形成薄膜的阈值链长:平行取向和垂直取向烷烃的碳原子数分别为 14 和 19。所获得的烷烃链长阈值及其在石墨烯/石墨表面二维单层中取向的几何参数与现有实验数据一致。
{"title":"Quantum chemical modeling of alkane2D monolayer formation on graphene","authors":"E.S. Kartashynska","doi":"10.1016/j.jciso.2024.100117","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100117","url":null,"abstract":"<div><p>The paper presents a quantum chemical approach for assessment of the thermodynamic parameters of association for alkanes C<sub>n</sub>H<sub>2n+2</sub> (<em>n</em> = 6–14) and polyaromatic hydrocarbons (PAH) of the coronene series as model structures of the graphene surface within the framework of semiempirical methods. The enthalpy, entropy and Gibbs energy of formation and binding for alkanes with PAH were calculated using the PM3 and PM6-DH2 methods. It is shown that an adequate description of the interactions in the regarded complexes requires the use of PM6-DH2 method, since it contains corrections for dispersion interactions and hydrogen bonds. The parallel orientation of the alkane molecule relative to the coronene plane is proved to be more energetically preferable than perpendicular one, which is consistent with experimental data.</p><p>Intermolecular C–H/π interactions are revealed to be crucial in the 2D film formation of alkanes on graphene/graphite. While interactions between alkane molecules make a destabilizing contribution due to the implementation of energetically unfavorable types of intermolecular CH/HC interactions. This stipulates a threshold chain length of alkanes capable of film formation on the graphene/graphite surface at standard temperature: 14 and 19 carbon atoms for parallel and perpendicular oriented alkanes, respectively. The obtained threshold values of the alkane chain length, as well as the geometric parameters of their orientation in 2D monolayers on the graphene/graphite surface are consistent with available experimental data.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000175/pdfft?md5=25768e49b6e5612608243f5b20cd1eb7&pid=1-s2.0-S2666934X24000175-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141479942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective adsorption of cationic dyes by layered double hydroxide with assist algae (Spirulina platensis) to enrich functional groups 层状双氢氧化物对阳离子染料的选择性吸附,辅助藻类(螺旋藻)富集功能基团
Q3 Materials Science Pub Date : 2024-06-26 DOI: 10.1016/j.jciso.2024.100118
Aldes Lesbani , Nur Ahmad , Risfidian Mohadi , Idha Royani , Sahrul Wibiyan , Amri , Yulizah Hanifah

The present study involved the preparation, characterization, and evaluation of layered double hydroxide (LDH) with the assistance of the algae Spirulina platensis (NiAl-Sp and ZnAl-Sp). These materials were investigated for their potential for selective adsorption of cationic dyes, including rhodamine B, malachite green, and methylene blue. The adsorbents exhibit a significant level of selectivity in their capacity to adsorb malachite green in comparison to other cationic dyes. The next parameter of adsorption was evaluated in malachite green as the selective adsorption of cationic dyes. Based on the Langmuir isotherm model, the calculated maximum adsorption capacities of NiAl-Sp and ZnAl-Sp for malachite green were determined to be 478.190 mg/g (pH = 4, 50 °C for 30 min) and 123.457 mg/g (pH = 4, 30 °C for 30 min), respectively. The main processes of adsorption encompassed not only electrostatic interactions but also hydrogen bonding and π-π interactions involving the dye and the amino, hydroxyl, and carboxyl functional groups derived from Spirulina platensis. Spirulina platensis enhances the functional group of LDH. The findings of this study indicate that the NiAl-Sp and ZnAl-Sp composite demonstrated stability as a sorbent for the adsorption of malachite green. Furthermore, it was observed that this composite could be utilized for up to four adsorption cycles, but there was a noticeable decrease in its adsorption capability over time. The findings revealed that the synthesized composite adsorbents of NiAl-Sp and ZnAl-Sp exhibit high efficacy in the adsorption of malachite green from effluent.

本研究涉及在藻类螺旋藻(NiAl-Sp 和 ZnAl-Sp)的帮助下制备、表征和评估层状双氢氧化物(LDH)。研究了这些材料选择性吸附阳离子染料(包括罗丹明 B、孔雀石绿和亚甲蓝)的潜力。与其他阳离子染料相比,这些吸附剂在吸附孔雀石绿的能力方面具有显著的选择性。孔雀石绿的下一个吸附参数是阳离子染料的选择性吸附。根据 Langmuir 等温线模型,计算得出 NiAl-Sp 和 ZnAl-Sp 对孔雀石绿的最大吸附容量分别为 478.190 mg/g(pH = 4,50 ℃,30 分钟)和 123.457 mg/g(pH = 4,30 ℃,30 分钟)。吸附的主要过程不仅包括静电作用,还包括染料与螺旋藻衍生的氨基、羟基和羧基官能团之间的氢键和π-π相互作用。螺旋藻增强了 LDH 的官能团。研究结果表明,NiAl-Sp 和 ZnAl-Sp 复合材料作为吸附剂吸附孔雀石绿时表现出稳定性。此外,还观察到这种复合材料最多可用于四个吸附循环,但随着时间的推移,其吸附能力会明显下降。研究结果表明,合成的 NiAl-Sp 和 ZnAl-Sp 复合吸附剂在吸附污水中的孔雀石绿方面具有很高的功效。
{"title":"Selective adsorption of cationic dyes by layered double hydroxide with assist algae (Spirulina platensis) to enrich functional groups","authors":"Aldes Lesbani ,&nbsp;Nur Ahmad ,&nbsp;Risfidian Mohadi ,&nbsp;Idha Royani ,&nbsp;Sahrul Wibiyan ,&nbsp;Amri ,&nbsp;Yulizah Hanifah","doi":"10.1016/j.jciso.2024.100118","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100118","url":null,"abstract":"<div><p>The present study involved the preparation, characterization, and evaluation of layered double hydroxide (LDH) with the assistance of the algae <em>Spirulina platensis</em> (NiAl-Sp and ZnAl-Sp). These materials were investigated for their potential for selective adsorption of cationic dyes, including rhodamine B, malachite green, and methylene blue. The adsorbents exhibit a significant level of selectivity in their capacity to adsorb malachite green in comparison to other cationic dyes. The next parameter of adsorption was evaluated in malachite green as the selective adsorption of cationic dyes. Based on the Langmuir isotherm model, the calculated maximum adsorption capacities of NiAl-Sp and ZnAl-Sp for malachite green were determined to be 478.190 mg/g (pH = 4, 50 °C for 30 min) and 123.457 mg/g (pH = 4, 30 °C for 30 min), respectively. The main processes of adsorption encompassed not only electrostatic interactions but also hydrogen bonding and π-π interactions involving the dye and the amino, hydroxyl, and carboxyl functional groups derived from <em>Spirulina platensis</em>. <em>Spirulina platensis</em> enhances the functional group of LDH. The findings of this study indicate that the NiAl-Sp and ZnAl-Sp composite demonstrated stability as a sorbent for the adsorption of malachite green. Furthermore, it was observed that this composite could be utilized for up to four adsorption cycles, but there was a noticeable decrease in its adsorption capability over time. The findings revealed that the synthesized composite adsorbents of NiAl-Sp and ZnAl-Sp exhibit high efficacy in the adsorption of malachite green from effluent.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000187/pdfft?md5=4428bec74e6a77c1e24c34aae21d7410&pid=1-s2.0-S2666934X24000187-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141480038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalysis-enhanced synthesis and stabilization of silver nanoparticles by methanol-based phytochemicals extract of Trigonella foenum-graecum seeds 用甲醇基植物化学提取物合成并稳定银纳米粒子
Q3 Materials Science Pub Date : 2024-06-12 DOI: 10.1016/j.jciso.2024.100116
Monalisha Sarmin , Sourav Gurung , Sreerupa Sarkar , Susmita Das , Muddasarul Hoda

Trigonella foenum-graecum is an economically important plant that has significant nutraceutical properties. Various parts of the plant have previously been reported to synthesize metal nanoparticles. However, the seeds of the plant have limited potential to synthesize metal nanoparticles. Green synthesis of silver nanoparticles requires phytochemicals as reducing and metal chelating agents, in addition to the stabilizing agents that play critical role in nanoparticles stabilization. The quantitative analysis of the methanol extract of the seeds suggest that the extract has significant antioxidant activity and reducing potential which is comparable to that of ascorbic acid. Likewise, GCMS data of the extract identified several phytochemical components that have nanoparticles stabilizing potential. Evidently, the extract indeed synthesized silver nanoparticles in dark, albeit in very low quantity. This limitation of low quantity of nanoparticles synthesis was overcome by photocatalysis. The rate of nanoparticles synthesis increased significantly with increase in the intensity of the white light-emitting diode (LED) light. Furthermore, the photocatalytic effect of the white light also has significant impact on the physicochemical characterisation of the nanoparticles. Particle size, nanoparticles yield and elemental analysis demonstrated that the 2000 lumens white LED light is optimum for photocatalysis as compared to the 250 lumens and 825 lumens light. However, the stability of nanoparticles is not influenced by photoirradiation, and is rather controlled by the phytochemical composition of the extract. Methanol extract of the seeds significantly enhanced the stability of the silver nanoparticles irrespective of the light intensities used for photocatalysis.

鹅掌楸是一种具有重要经济价值的植物,具有显著的营养保健特性。据报道,该植物的不同部分可合成金属纳米颗粒。然而,该植物的种子合成金属纳米粒子的潜力有限。银纳米粒子的绿色合成除了需要植物化学物质作为还原剂和金属螯合剂外,还需要在纳米粒子稳定过程中发挥关键作用的稳定剂。对种子甲醇提取物的定量分析表明,该提取物具有显著的抗氧化活性和还原潜力,可与抗坏血酸相媲美。同样,萃取物的 GCMS 数据也确定了几种具有纳米颗粒稳定潜力的植物化学成分。显然,该提取物确实在黑暗中合成了银纳米粒子,尽管数量很少。光催化技术克服了纳米粒子合成量低的限制。随着白光发光二极管(LED)光强度的增加,纳米粒子的合成率也明显增加。此外,白光的光催化效应对纳米颗粒的理化特性也有重要影响。粒度、纳米颗粒产量和元素分析表明,与 250 流明和 825 流明的白光相比,2000 流明的白光 LED 光催化效果最佳。然而,纳米颗粒的稳定性并不受光照的影响,而是由提取物的植物化学成分控制。无论光催化使用的光强度如何,种子的甲醇提取物都能显著提高纳米银粒子的稳定性。
{"title":"Photocatalysis-enhanced synthesis and stabilization of silver nanoparticles by methanol-based phytochemicals extract of Trigonella foenum-graecum seeds","authors":"Monalisha Sarmin ,&nbsp;Sourav Gurung ,&nbsp;Sreerupa Sarkar ,&nbsp;Susmita Das ,&nbsp;Muddasarul Hoda","doi":"10.1016/j.jciso.2024.100116","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100116","url":null,"abstract":"<div><p><em>Trigonella foenum-graecum</em> is an economically important plant that has significant nutraceutical properties. Various parts of the plant have previously been reported to synthesize metal nanoparticles. However, the seeds of the plant have limited potential to synthesize metal nanoparticles. Green synthesis of silver nanoparticles requires phytochemicals as reducing and metal chelating agents, in addition to the stabilizing agents that play critical role in nanoparticles stabilization. The quantitative analysis of the methanol extract of the seeds suggest that the extract has significant antioxidant activity and reducing potential which is comparable to that of ascorbic acid. Likewise, GCMS data of the extract identified several phytochemical components that have nanoparticles stabilizing potential. Evidently, the extract indeed synthesized silver nanoparticles in dark, albeit in very low quantity. This limitation of low quantity of nanoparticles synthesis was overcome by photocatalysis. The rate of nanoparticles synthesis increased significantly with increase in the intensity of the white light-emitting diode (LED) light. Furthermore, the photocatalytic effect of the white light also has significant impact on the physicochemical characterisation of the nanoparticles. Particle size, nanoparticles yield and elemental analysis demonstrated that the 2000 lumens white LED light is optimum for photocatalysis as compared to the 250 lumens and 825 lumens light. However, the stability of nanoparticles is not influenced by photoirradiation, and is rather controlled by the phytochemical composition of the extract. Methanol extract of the seeds significantly enhanced the stability of the silver nanoparticles irrespective of the light intensities used for photocatalysis.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000163/pdfft?md5=73819897e4a3cd954feecd680d978f42&pid=1-s2.0-S2666934X24000163-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of chain length of amido betaines and amine degree of diamines on the binary supramolecular assembly and viscosity dynamics of amido betaine/diamine coacervates 氨基甜菜碱的链长和二胺的胺度对氨基甜菜碱/二胺共凝聚体的二元超分子组装和粘度动力学的影响
Q3 Materials Science Pub Date : 2024-05-14 DOI: 10.1016/j.jciso.2024.100112
Yu-Ting Lin , Wentao Zhou , Shuhao Liu , Bhargavi Bhat , Kai-Yuan Kuan , Silabrata Pahari , Joseph Kwon , Mustafa E.S. Akbulut

Recently, there has been growing interest in the hierarchical assemblies of zwitterionic betaine amphiphiles across various fields due to their utility as stimuli-responsive materials. Herein, we systematically investigate the binary supramolecular assembly of zwitterionic amido betaines and diamines to determine how alkyl chain length of amido betaines (CnDAB) and amine degree of diamines influence their relaxation dynamics of the resultant coacervates. To this end, we synthesized five CnDAB molecules with systematically varying carbon chain lengths (n = 12, 14, 16, 18, and 20) and conjugated them with three different diamines (ethylenediamine, EDA; n,n'-dimethylethylenediamine, DMEDA; and n,n,n',n'-tetramethylethylenediamine,TMEDA). We employed rheology to compare the bulk properties and relaxation dynamics of these assemblies as well as to gain insight into their responsiveness to pH stimulus. All betaine/diamine co-assemblies for all pH values showed shear-thinning behavior while the onset of shear thinning behavior showed some variation for the shear rate inducing such an onset. By changing molecular architecture of co-assembling pairs, zero-shear viscosity values varied from ∼10−1 Pa s to ∼103 Pa s at a concentration of 100 mM CnDAB and 50 mM diamine in water. Four-order-of-magnitude difference in viscosity with small changes in molecular architecture and pH indicates that precise tuning of the rheological properties is possible simply by controlling the self-assembly tendencies and nano-to-micro scale aggregation morphologies through bi-molecular design. Out of 15 different combinations of betaine and diamine pairs studied, the primary amine EDA conjugated with C18DAB resulted in the highest degree of pH-controlled viscosity changes (i.e., highest pH-responsivity). Below 16-carbon alkyl chains on the betaines, pH responsiveness mostly disappeared. Overall, this systematic study brings new insights into the molecular structure-property relationships of amido betaine/diamine systems, which are widely used in diverse sets of applications and fields.

近来,由于具有刺激响应材料的作用,各领域对齐聚氨基甜菜碱双亲化合物的分层组装越来越感兴趣。在此,我们系统地研究了两性离子型氨基甜菜碱和二胺的二元超分子组装,以确定氨基甜菜碱(CnDAB)的烷基链长和二胺的胺度如何影响所产生的共凝聚体的弛豫动力学。为此,我们合成了五种碳链长度各异(n = 12、14、16、18 和 20)的 CnDAB 分子,并将它们与三种不同的二胺(乙二胺,EDA;n,n'-二甲基乙二胺,DMEDA;和 n,n,n',n'-四甲基乙二胺,TMEDA)共轭。我们采用流变学方法比较了这些组装体的体积特性和弛豫动力学,并深入了解了它们对 pH 值刺激的响应性。在所有 pH 值条件下,所有甜菜碱/二胺共聚物都表现出剪切稀化行为,而剪切稀化行为的开始时间则因剪切速率的不同而有所差异。通过改变共组装对的分子结构,在水中浓度为 100 mM CnDAB 和 50 mM 二胺时,零剪切粘度值从 ∼10-1 Pa s 到 ∼103 Pa s 不等。分子结构和 pH 值稍有变化,粘度就会出现四个数量级的差异,这表明只需通过双分子设计控制自组装趋势和纳米到微米级的聚集形态,就能精确调节流变特性。在所研究的 15 种不同的甜菜碱和二胺组合中,与 C18DAB 共轭的伯胺 EDA 可产生最高程度的 pH 值控制粘度变化(即最高的 pH 值响应性)。甜菜碱上的烷基链低于 16 个碳时,pH 反应性大多消失。总之,这项系统性研究为广泛应用于各个领域的氨基甜菜碱/二胺体系的分子结构-性能关系带来了新的见解。
{"title":"Influence of chain length of amido betaines and amine degree of diamines on the binary supramolecular assembly and viscosity dynamics of amido betaine/diamine coacervates","authors":"Yu-Ting Lin ,&nbsp;Wentao Zhou ,&nbsp;Shuhao Liu ,&nbsp;Bhargavi Bhat ,&nbsp;Kai-Yuan Kuan ,&nbsp;Silabrata Pahari ,&nbsp;Joseph Kwon ,&nbsp;Mustafa E.S. Akbulut","doi":"10.1016/j.jciso.2024.100112","DOIUrl":"10.1016/j.jciso.2024.100112","url":null,"abstract":"<div><p>Recently, there has been growing interest in the hierarchical assemblies of zwitterionic betaine amphiphiles across various fields due to their utility as stimuli-responsive materials. Herein, we systematically investigate the binary supramolecular assembly of zwitterionic amido betaines and diamines to determine how alkyl chain length of amido betaines (C<sub>n</sub>DAB) and amine degree of diamines influence their relaxation dynamics of the resultant coacervates. To this end, we synthesized five C<sub>n</sub>DAB molecules with systematically varying carbon chain lengths (n = 12, 14, 16, 18, and 20) and conjugated them with three different diamines (ethylenediamine, EDA; n,n'-dimethylethylenediamine, DMEDA; and n,n,n',n'-tetramethylethylenediamine,TMEDA). We employed rheology to compare the bulk properties and relaxation dynamics of these assemblies as well as to gain insight into their responsiveness to pH stimulus. All betaine/diamine co-assemblies for all pH values showed shear-thinning behavior while the onset of shear thinning behavior showed some variation for the shear rate inducing such an onset. By changing molecular architecture of co-assembling pairs, zero-shear viscosity values varied from ∼10<sup>−1</sup> Pa s to ∼10<sup>3</sup> Pa s at a concentration of 100 mM C<sub>n</sub>DAB and 50 mM diamine in water. Four-order-of-magnitude difference in viscosity with small changes in molecular architecture and pH indicates that precise tuning of the rheological properties is possible simply by controlling the self-assembly tendencies and nano-to-micro scale aggregation morphologies through bi-molecular design. Out of 15 different combinations of betaine and diamine pairs studied, the primary amine EDA conjugated with C<sub>18</sub>DAB resulted in the highest degree of pH-controlled viscosity changes (i.e., highest pH-responsivity). Below 16-carbon alkyl chains on the betaines, pH responsiveness mostly disappeared. Overall, this systematic study brings new insights into the molecular structure-property relationships of amido betaine/diamine systems, which are widely used in diverse sets of applications and fields.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000114/pdfft?md5=a02dc01122da394d0ad7ff685c708359&pid=1-s2.0-S2666934X24000114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141025794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Description of surfactant 2D monolayer formation at the air/water interface within semiempirical quantum chemistry 在半经验量子化学中描述空气/水界面上表面活性剂二维单层的形成
Q3 Materials Science Pub Date : 2024-03-22 DOI: 10.1016/j.jciso.2024.100110
E.S. Kartashynska , D. Vollhardt

The review discusses the development of a quantum chemical approach for calculating the thermodynamic clusterization parameters of surfactants at the air/water interface. It characterizes the intermolecular interactions that govern the process of surfactant association. Of particular interest are the dispersion interactions CH···HC between the hydrophobic chains of surfactants, as well as their accurate description within the exploited scheme and semiempirical methods. The scheme is based on calculating the thermodynamic parameters of formation for a certain number of surfactant monomers and small clusters with different chain lengths using the supermolecule approximation. Furthermore, it enables the construction of an additive scheme with assessed values of the increments of CH···HC interactions and interactions between the hydrophilic parts. This scheme provides equations for thermodynamic clusterization parameters per one surfactant molecule of infinite 2D films. The number of parameters adequately assessed within this approach is described in the previous review in Colloid Polym. Sci., 2015, 293, 3065–3089: the threshold chain length of spontaneous clusterization, the “temperature effect” of clusterization, and the assessment of the molecular tilt angle of the surfactant with respect to the interface. In this context, our aim is to describe additional parameters and experimental phenomena. These include the dependence of the area per surfactant molecule in a 2D monolayer at the LE-LC phase transition on temperature and chain length, the correlation of the surfactant clusterization threshold with the solubility threshold, and with the donor-acceptor properties of the substituents included in the hydrophilic part. We also explore surfactant binary mixtures, surfactant – alkane mixtures, and the role of amphiphiles in the formation of alkane adsorption layers. Additionally, we investigate the shifting of the acid or base value (pKa, pKb) of surfactants with chain elongation during monolayer formation, as well as the dendricity of surfactant domains with an increase in temperature or shortening of chain length.

综述讨论了计算空气/水界面表面活性剂热力学聚类参数的量子化学方法的发展。它描述了支配表面活性剂结合过程的分子间相互作用。特别值得关注的是表面活性剂疏水链之间的分散相互作用 CH----HC,以及在所利用的方案和半经验方法中对它们的精确描述。该方案的基础是利用超分子近似法计算一定数量的表面活性剂单体和不同链长的小簇的形成热力学参数。此外,该方法还可以构建一个加法方案,对 CH--HC 相互作用和亲水部分之间相互作用的增量进行评估。该方案提供了无限二维薄膜中每个表面活性剂分子的热力学聚类参数方程。在《Colloid Polym.Sci.,2015,293,3065-3089 中的综述中描述了:自发聚类的阈值链长、聚类的 "温度效应 "以及表面活性剂相对于界面的分子倾斜角评估。在此背景下,我们的目标是描述更多参数和实验现象。其中包括在 LE-LC 相变时二维单层中每个表面活性剂分子的面积对温度和链长的依赖性、表面活性剂聚类阈值与溶解度阈值的相关性,以及与亲水部分所含取代基的供体-受体特性的相关性。我们还探讨了表面活性剂二元混合物、表面活性剂-烷烃混合物以及两性化合物在形成烷烃吸附层中的作用。此外,我们还研究了在单层形成过程中,表面活性剂的酸值或碱值(pKa、pKb)会随着链的拉长而发生变化,以及表面活性剂畴的树枝性会随着温度的升高或链长度的缩短而发生变化。
{"title":"Description of surfactant 2D monolayer formation at the air/water interface within semiempirical quantum chemistry","authors":"E.S. Kartashynska ,&nbsp;D. Vollhardt","doi":"10.1016/j.jciso.2024.100110","DOIUrl":"10.1016/j.jciso.2024.100110","url":null,"abstract":"<div><p>The review discusses the development of a quantum chemical approach for calculating the thermodynamic clusterization parameters of surfactants at the air/water interface. It characterizes the intermolecular interactions that govern the process of surfactant association. Of particular interest are the dispersion interactions CH···HC between the hydrophobic chains of surfactants, as well as their accurate description within the exploited scheme and semiempirical methods. The scheme is based on calculating the thermodynamic parameters of formation for a certain number of surfactant monomers and small clusters with different chain lengths using the supermolecule approximation. Furthermore, it enables the construction of an additive scheme with assessed values of the increments of CH···HC interactions and interactions between the hydrophilic parts. This scheme provides equations for thermodynamic clusterization parameters per one surfactant molecule of infinite 2D films. The number of parameters adequately assessed within this approach is described in the previous review in Colloid Polym. Sci., 2015, 293, 3065–3089: the threshold chain length of spontaneous clusterization, the “temperature effect” of clusterization, and the assessment of the molecular tilt angle of the surfactant with respect to the interface. In this context, our aim is to describe additional parameters and experimental phenomena. These include the dependence of the area per surfactant molecule in a 2D monolayer at the LE-LC phase transition on temperature and chain length, the correlation of the surfactant clusterization threshold with the solubility threshold, and with the donor-acceptor properties of the substituents included in the hydrophilic part. We also explore surfactant binary mixtures, surfactant – alkane mixtures, and the role of amphiphiles in the formation of alkane adsorption layers. Additionally, we investigate the shifting of the acid or base value (pK<sub>a</sub>, pK<sub>b</sub>) of surfactants with chain elongation during monolayer formation, as well as the dendricity of surfactant domains with an increase in temperature or shortening of chain length.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000096/pdfft?md5=a09de5e5867f1ed15a5942b1952201e2&pid=1-s2.0-S2666934X24000096-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140282677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life in a saturated salt environment; a colloidal perspective 饱和盐环境中的生命;胶体视角
Q3 Materials Science Pub Date : 2024-03-12 DOI: 10.1016/j.jciso.2024.100109
Håkan Wennerström
{"title":"Life in a saturated salt environment; a colloidal perspective","authors":"Håkan Wennerström","doi":"10.1016/j.jciso.2024.100109","DOIUrl":"https://doi.org/10.1016/j.jciso.2024.100109","url":null,"abstract":"","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000084/pdfft?md5=ccbab544a37ee3eecd0bc59b1d595949&pid=1-s2.0-S2666934X24000084-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
JCIS open
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1