Anderson Santos da Silva, G. B. A. Moura, P. Lopes, M. Guimarães, A. C. Bezerra, Anthony Wellington Almeida Gomes
{"title":"PREDIÇÃO DA PRODUTIVIDADE DE CANA-DE-AÇÚCAR COM BASE EM MODELO AGROMETEOROLÓGICO NO SEMIÁRIDO BRASILEIRO","authors":"Anderson Santos da Silva, G. B. A. Moura, P. Lopes, M. Guimarães, A. C. Bezerra, Anthony Wellington Almeida Gomes","doi":"10.31413/nativa.v10i4.13773","DOIUrl":null,"url":null,"abstract":"A predição da produtividade de cultivos de cana-de-açúcar é fundamental para o planejamento logístico dos produtores. No entanto, muitas propriedades recorrem a estimativa visual de produtividades em áreas canavieiras, o que, muitas vezes, geram dados tendencioso que não refletem a real produtividade dos cultivos. Objetivou-se construir um modelo de regressão linear múltipla para a estimativa de produtividade da cana-de-açúcar na região do semiárido nordestino. Foram utilizados dados anuais de rendimento agrícola (safras 2005/2006 a 2011/2012) e agrometeorológicos mensais (2005 a 2012). Para a calibração do modelo, a escolha das variáveis independentes foi analisada mediante a correlação existente dos dados agrometeorológicos e de rendimento, logo em seguida foi construída a regressão linear múltipla para estimar a produtividade da cana-de-açúcar. As variáveis independentes selecionadas para o modelo foram a irrigação mais precipitação pluvial, a temperatura média do ar, o déficit de saturação de vapor do ar e o fotoperíodo. No período da calibração, as regressões lineares múltiplas apresentaram resultados satisfatórios com diferença relativa média inferior a 3% e um erro padrão de estimativa de 2,7264 toneladas de cana em todos os anos-safras analisados. Na validação do modelo agrometeorológico, o melhor desempenho foi obtido no ano-safra de 2004/2005 quando comparado com os anos-safras de 2013/2014 e 2014/2015, respectivamente, período que houve a renovação de plantio. Mediante o uso de um fator de correção, o modelo agrometeorológico obteve um ajuste nos anos-safras de 2013/2014 e 2014/2015 melhorando seu desempenho. Características como baixo custo, facilidade de executar e precisão tornam as regressões lineares múltiplas como excelentes ferramentas.\nPalavras-chave: precipitação; Saccharum officinarum; modelagem; agrometeorologia.\n \nSugarcane yield prediction based on agrometeorological model in the Brazilian semi-arid \n \nABSTRACT: The prediction of the productivity of sugarcane crops is essential for the logistical planning of producers. However, many properties resort to visual estimates of yields in sugarcane areas, which often generate biased data that do not reflect the real productivity of crops. This study aimed to build a multiple linear regression model to estimate productivity of sugarcane in the northeastern semi-arid region. Anual data of agricultural income were used (harvest 2005/2006 to 2011/2012) and monthly agro-meteorological data (2005-2012). For the model calibration period, the choice of the independent variable of the regression was analyzed by correlation of crop weather data and output data then were defined variables and constructed linear regression to estimate the yield of sugar cane -sugar. The independent variables selected for the model were irrigation more rainfall, average air temperature, the vapor saturation deficit of the air and the photoperiod. At the calibration period, the multiple linear regressions showed satisfactory results with average relative difference of less than 3%, and a standard error of estimate of 2.7264 tons of sugarcane in all crop years analyzed. Validation of the agro-meteorological model, the best performance was obtained in crop year 2004/2005 compared to the crop years of 2013/2014 and 2014/2015, respectively, a period that was renewed planting. By using a correction factor, the agro-meteorological model obtained an adjustment in crop years of 2013/2014 and 2014/2015 improving its performance. Features such as low cost, easy to implement and precision make the multiple linear regressions as an excellent tool.\nKeywords: precipitation; Saccharum officinarum; modeling; agrometeorology.","PeriodicalId":44324,"journal":{"name":"Nativa","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nativa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31413/nativa.v10i4.13773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A predição da produtividade de cultivos de cana-de-açúcar é fundamental para o planejamento logístico dos produtores. No entanto, muitas propriedades recorrem a estimativa visual de produtividades em áreas canavieiras, o que, muitas vezes, geram dados tendencioso que não refletem a real produtividade dos cultivos. Objetivou-se construir um modelo de regressão linear múltipla para a estimativa de produtividade da cana-de-açúcar na região do semiárido nordestino. Foram utilizados dados anuais de rendimento agrícola (safras 2005/2006 a 2011/2012) e agrometeorológicos mensais (2005 a 2012). Para a calibração do modelo, a escolha das variáveis independentes foi analisada mediante a correlação existente dos dados agrometeorológicos e de rendimento, logo em seguida foi construída a regressão linear múltipla para estimar a produtividade da cana-de-açúcar. As variáveis independentes selecionadas para o modelo foram a irrigação mais precipitação pluvial, a temperatura média do ar, o déficit de saturação de vapor do ar e o fotoperíodo. No período da calibração, as regressões lineares múltiplas apresentaram resultados satisfatórios com diferença relativa média inferior a 3% e um erro padrão de estimativa de 2,7264 toneladas de cana em todos os anos-safras analisados. Na validação do modelo agrometeorológico, o melhor desempenho foi obtido no ano-safra de 2004/2005 quando comparado com os anos-safras de 2013/2014 e 2014/2015, respectivamente, período que houve a renovação de plantio. Mediante o uso de um fator de correção, o modelo agrometeorológico obteve um ajuste nos anos-safras de 2013/2014 e 2014/2015 melhorando seu desempenho. Características como baixo custo, facilidade de executar e precisão tornam as regressões lineares múltiplas como excelentes ferramentas.
Palavras-chave: precipitação; Saccharum officinarum; modelagem; agrometeorologia.
Sugarcane yield prediction based on agrometeorological model in the Brazilian semi-arid
ABSTRACT: The prediction of the productivity of sugarcane crops is essential for the logistical planning of producers. However, many properties resort to visual estimates of yields in sugarcane areas, which often generate biased data that do not reflect the real productivity of crops. This study aimed to build a multiple linear regression model to estimate productivity of sugarcane in the northeastern semi-arid region. Anual data of agricultural income were used (harvest 2005/2006 to 2011/2012) and monthly agro-meteorological data (2005-2012). For the model calibration period, the choice of the independent variable of the regression was analyzed by correlation of crop weather data and output data then were defined variables and constructed linear regression to estimate the yield of sugar cane -sugar. The independent variables selected for the model were irrigation more rainfall, average air temperature, the vapor saturation deficit of the air and the photoperiod. At the calibration period, the multiple linear regressions showed satisfactory results with average relative difference of less than 3%, and a standard error of estimate of 2.7264 tons of sugarcane in all crop years analyzed. Validation of the agro-meteorological model, the best performance was obtained in crop year 2004/2005 compared to the crop years of 2013/2014 and 2014/2015, respectively, a period that was renewed planting. By using a correction factor, the agro-meteorological model obtained an adjustment in crop years of 2013/2014 and 2014/2015 improving its performance. Features such as low cost, easy to implement and precision make the multiple linear regressions as an excellent tool.
Keywords: precipitation; Saccharum officinarum; modeling; agrometeorology.