Genetic programming convergence

IF 1.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Genetic Programming and Evolvable Machines Pub Date : 2021-08-30 DOI:10.1145/3520304.3534063
W. Langdon
{"title":"Genetic programming convergence","authors":"W. Langdon","doi":"10.1145/3520304.3534063","DOIUrl":null,"url":null,"abstract":"We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured and shown in many cases to fall. In an expanding region about the root node, both genetic opcodes and function evaluation values are identical or nearly identical. Bottom up (leaf to root) analysis shows both syntactic and semantic (including entropy) similarity expand from the outermost node. Despite large regions of zero variation, fitness continues to evolve and near zero crossover disruption suggests improved GP systems within existing memory use.","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"23 1","pages":"71-104"},"PeriodicalIF":1.7000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Programming and Evolvable Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3520304.3534063","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 10

Abstract

We study both genotypic and phenotypic convergence in GP floating point continuous domain symbolic regression over thousands of generations. Subtree fitness variation across the population is measured and shown in many cases to fall. In an expanding region about the root node, both genetic opcodes and function evaluation values are identical or nearly identical. Bottom up (leaf to root) analysis shows both syntactic and semantic (including entropy) similarity expand from the outermost node. Despite large regions of zero variation, fitness continues to evolve and near zero crossover disruption suggests improved GP systems within existing memory use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传规划收敛
我们研究了GP浮点连续域符号回归的基因型和表型收敛。测量了整个种群的子树适应度变化,并显示在许多情况下下降。在根节点附近的扩展区域内,遗传操作码和功能评价值是相同或接近相同的。自底向上(从叶子到根)分析显示,语法和语义(包括熵)相似性从最外层的节点扩展。尽管存在很大的零变异区域,但适应度仍在继续进化,接近零交叉干扰表明,在现有内存使用范围内,GP系统得到了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines 工程技术-计算机:理论方法
CiteScore
5.90
自引率
3.80%
发文量
19
审稿时长
6 months
期刊介绍: A unique source reporting on methods for artificial evolution of programs and machines... Reports innovative and significant progress in automatic evolution of software and hardware. Features both theoretical and application papers. Covers hardware implementations, artificial life, molecular computing and emergent computation techniques. Examines such related topics as evolutionary algorithms with variable-size genomes, alternate methods of program induction, approaches to engineering systems development based on embryology, morphogenesis or other techniques inspired by adaptive natural systems.
期刊最新文献
Evolving code with a large language model Hga-lstm: LSTM architecture and hyperparameter search by hybrid GA for air pollution prediction A survey on dynamic populations in bio-inspired algorithms GSGP-hardware: instantaneous symbolic regression with an FPGA implementation of geometric semantic genetic programming Geometric semantic GP with linear scaling: Darwinian versus Lamarckian evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1