Self-Propagating High-Temperature Synthesis of MgB2 superconductor: A Review

IF 0.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Self-Propagating High-Temperature Synthesis Pub Date : 2023-04-05 DOI:10.3103/S1061386223010065
W. Ramdane
{"title":"Self-Propagating High-Temperature Synthesis of MgB2 superconductor: A Review","authors":"W. Ramdane","doi":"10.3103/S1061386223010065","DOIUrl":null,"url":null,"abstract":"<p>Since the critical temperature of MgB<sub>2</sub> (39 K) is the highest in the superconductors and the chemical composition and crystal structure are very simple as compared to high temperature superconductors, MgB<sub>2</sub> has attracted a lot of attention in the world. This paper is a brief study of self-propagating high-temperature synthesis of MgB<sub>2</sub> superconductor. Sample preparation, ignition mode, and relationship between structure and magnetic properties of finals SHS products were identified. This method has demonstrated significant success in the synthesis of MgB<sub>2</sub> superconductor and the introduction of pinning centers into the superconducting matrix is practice to improve superconducting properties.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 1","pages":"41 - 59"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223010065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the critical temperature of MgB2 (39 K) is the highest in the superconductors and the chemical composition and crystal structure are very simple as compared to high temperature superconductors, MgB2 has attracted a lot of attention in the world. This paper is a brief study of self-propagating high-temperature synthesis of MgB2 superconductor. Sample preparation, ignition mode, and relationship between structure and magnetic properties of finals SHS products were identified. This method has demonstrated significant success in the synthesis of MgB2 superconductor and the introduction of pinning centers into the superconducting matrix is practice to improve superconducting properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MgB2超导体自传播高温合成研究进展
由于MgB2的临界温度(39k)是超导体中最高的,而且与高温超导体相比,MgB2的化学成分和晶体结构都非常简单,因此受到了世界各国的广泛关注。本文对自传播高温合成MgB2超导体进行了简要的研究。研究了SHS的样品制备、点火方式、结构与磁性能的关系。该方法在MgB2超导体的合成中取得了显著的成功,在超导基体中引入钉钉中心是提高超导性能的实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
27
期刊介绍: International Journal of Self-Propagating High-Temperature Synthesis  is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.
期刊最新文献
Spatial Gasless Combustion Modes in a Sample with Discrete Structure Finger Formation during Combustion of Granular Mixture Zr + 0.5C in Inert Gas Flow Exploring the Influence of Zinc Doping on Nano Ferrites: A Review of Structural, Dielectric, and Magnetic Studies Self-Propagating High-Temperature Synthesis of MgAlON Using Mg Powder Multifunctional Catalysts Based on High-Entropy Transition Metal Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1