Roughness prediction of end milling surface for behavior mapping of digital twined machine tools

Suiyan Shang, G. Jiang, Zheng Sun, Wenwen Tian, Dawei Zhang, Jun Xu, C. Cheung
{"title":"Roughness prediction of end milling surface for behavior mapping of digital twined machine tools","authors":"Suiyan Shang, G. Jiang, Zheng Sun, Wenwen Tian, Dawei Zhang, Jun Xu, C. Cheung","doi":"10.12688/digitaltwin.17819.1","DOIUrl":null,"url":null,"abstract":"Background: The quality of machined parts is considered as a relevant factor to evaluate the production performance of machine tools. For mapping the production performance into a digital twin machine tool, a virtual metrology model for surface roughness prediction, which affects products' mechanical capacity and aesthetic performance, is proposed in this paper. Methods: The proposed model applies a three-layer backpropagation neural network by using real-time vibration, force, and current sensor data collected during the end milling machining process. A grid search plan is used to settle down the number of neurons in the middle layer of the backpropagation neural network. Results: The experimental results indicate that the model with multiple signals as input performs better than it with a single signal. In detail, when the model input is the combination of force, vibration, and current sensor data, the prediction accuracy reaches the optimum with the mean absolute percentage error of 1.01%. Conclusions: Compared with the state-of-the-art convolutional neural network method with automatic feature extraction ability and other commonly used traditional machine learning methods, the proposed data preprocessing procedure integrated with a three-layer backpropagation neural network has a minimum prediction error.","PeriodicalId":29831,"journal":{"name":"Digital Twin","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Twin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/digitaltwin.17819.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: The quality of machined parts is considered as a relevant factor to evaluate the production performance of machine tools. For mapping the production performance into a digital twin machine tool, a virtual metrology model for surface roughness prediction, which affects products' mechanical capacity and aesthetic performance, is proposed in this paper. Methods: The proposed model applies a three-layer backpropagation neural network by using real-time vibration, force, and current sensor data collected during the end milling machining process. A grid search plan is used to settle down the number of neurons in the middle layer of the backpropagation neural network. Results: The experimental results indicate that the model with multiple signals as input performs better than it with a single signal. In detail, when the model input is the combination of force, vibration, and current sensor data, the prediction accuracy reaches the optimum with the mean absolute percentage error of 1.01%. Conclusions: Compared with the state-of-the-art convolutional neural network method with automatic feature extraction ability and other commonly used traditional machine learning methods, the proposed data preprocessing procedure integrated with a three-layer backpropagation neural network has a minimum prediction error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于数字孪晶机床行为映射的端面粗糙度预测
背景:被加工零件的质量被认为是评价机床生产性能的一个相关因素。为了将生产性能映射到数字孪生机床中,本文提出了一种影响产品机械性能和美观性能的表面粗糙度预测虚拟计量模型。方法:利用立铣削加工过程中实时采集的振动、力和电流传感器数据,建立三层反向传播神经网络模型。采用网格搜索方案确定反向传播神经网络中间层的神经元数量。结果:实验结果表明,多信号作为输入的模型比单信号作为输入的模型性能更好。其中,当模型输入为力、振动和电流传感器数据的组合时,预测精度达到最佳,平均绝对百分比误差为1.01%。结论:与具有自动特征提取能力的最先进的卷积神经网络方法和其他常用的传统机器学习方法相比,本文提出的结合三层反向传播神经网络的数据预处理方法预测误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Digital Twin
Digital Twin digital twin technologies-
自引率
0.00%
发文量
0
期刊介绍: Digital Twin is a rapid multidisciplinary open access publishing platform for state-of-the-art, basic, scientific and applied research on digital twin technologies. Digital Twin covers all areas related digital twin technologies, including broad fields such as smart manufacturing, civil and industrial engineering, healthcare, agriculture, and many others. The platform is open to submissions from researchers, practitioners and experts, and all articles will benefit from open peer review.  The aim of Digital Twin is to advance the state-of-the-art in digital twin research and encourage innovation by highlighting efficient, robust and sustainable multidisciplinary applications across a variety of fields. Challenges can be addressed using theoretical, methodological, and technological approaches. The scope of Digital Twin includes, but is not limited to, the following areas:  ● Digital twin concepts, architecture, and frameworks ● Digital twin theory and method ● Digital twin key technologies and tools ● Digital twin applications and case studies ● Digital twin implementation ● Digital twin services ● Digital twin security ● Digital twin standards Digital twin also focuses on applications within and across broad sectors including: ● Smart manufacturing ● Aviation and aerospace ● Smart cities and construction ● Healthcare and medicine ● Robotics ● Shipping, vehicles and railways ● Industrial engineering and engineering management ● Agriculture ● Mining ● Power, energy and environment Digital Twin features a range of article types including research articles, case studies, method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.
期刊最新文献
Digital twin-based modeling of natural gas leakage and dispersion in urban utility tunnels Data-driven modeling in digital twin for power system anomaly detection Is it possible to develop a digital twin for noise monitoring in manufacturing? Modeling of cross-scale human activity for digital twin workshop Digital twinning of temperature fields for modular multilayer multiphase pipeline structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1