{"title":"An experimental study of proton implantation in olivine","authors":"Thilo Bissbort, Qinting Jiang, Hans-Werner Becker, Varvara Foteinou, Sumit Chakraborty","doi":"10.1007/s00269-023-01234-9","DOIUrl":null,"url":null,"abstract":"<div><p>Implantation of ions in minerals by high energy radiation is an important process in planetary and materials sciences. For example, the solar wind is a multi-ion flux that progressively modifies the composition and structure of near-surface domains in solar objects, like asteroids. A bombardment of a target by different elements like hydrogen (H) at various energies causes, among other things, the implantation of these particles in crystalline and amorphous materials. It is important to understand the mechanisms and features of this process (e.g., how much is implanted and retained), to constrain its contribution to the chemical budget of solar objects or for planning various material-science applications. Yet, there has been no detailed study on H implantation into olivine (e.g., the quantification of maximum retainable H), a major mineral in this context. We performed experiments on H implantation in San Carlos olivine at 10 and 20 keV with increasing fluences (up to 3×10<sup>18</sup> at/cm<sup>2</sup>). Nanoscale H profiles that result from implantation were analyzed using Nuclear Resonance Reaction Analysis after each implantation to observe the evolution of the H distribution as a function of fluence. We observed that after a systematic growth of the characteristic, approximately Gaussian shaped, H profiles with increasing fluences, a maximum concentration at H ~ 20 at% is attained. The maximum concentration is approximately independent of ion energy, but the maximum penetration depth is a function of beam energy and is greater at higher energies. The shapes of the profiles as well as the maximum concentrations deviate from those predicted by currently available models and point to the need for direct experimental measurements. We compared the depth profiles with predictions by SRIM. Based on observations from this study, we were able to constrain the maximum retainable H in olivine as a function of ion energy.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01234-9.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01234-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Implantation of ions in minerals by high energy radiation is an important process in planetary and materials sciences. For example, the solar wind is a multi-ion flux that progressively modifies the composition and structure of near-surface domains in solar objects, like asteroids. A bombardment of a target by different elements like hydrogen (H) at various energies causes, among other things, the implantation of these particles in crystalline and amorphous materials. It is important to understand the mechanisms and features of this process (e.g., how much is implanted and retained), to constrain its contribution to the chemical budget of solar objects or for planning various material-science applications. Yet, there has been no detailed study on H implantation into olivine (e.g., the quantification of maximum retainable H), a major mineral in this context. We performed experiments on H implantation in San Carlos olivine at 10 and 20 keV with increasing fluences (up to 3×1018 at/cm2). Nanoscale H profiles that result from implantation were analyzed using Nuclear Resonance Reaction Analysis after each implantation to observe the evolution of the H distribution as a function of fluence. We observed that after a systematic growth of the characteristic, approximately Gaussian shaped, H profiles with increasing fluences, a maximum concentration at H ~ 20 at% is attained. The maximum concentration is approximately independent of ion energy, but the maximum penetration depth is a function of beam energy and is greater at higher energies. The shapes of the profiles as well as the maximum concentrations deviate from those predicted by currently available models and point to the need for direct experimental measurements. We compared the depth profiles with predictions by SRIM. Based on observations from this study, we were able to constrain the maximum retainable H in olivine as a function of ion energy.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)