{"title":"Experimental setup for in-process measurements and analysis of wear-dependent surface topographies","authors":"Nils Potthoff, J. Liss, P. Wiederkehr","doi":"10.1115/1.4063133","DOIUrl":null,"url":null,"abstract":"\n High-strength and corrosion-resistant materials, such as the nickel-based superalloy Inconel 718, are widely used in the energy and aerospace industries. However, machining these materials results in high process forces and significant tool wear. This tool wear has a negative effect on the resulting surface topography. Nevertheless, the accuracy requirements for functional surfaces are extreme high. Simulation systems can be used to design these processes. However, time-consuming and cost-intensive experiments often have to be conducted to develop and parameterize the required models. To overcome this problem, an analogy test setup for in-process measurements of wear-dependent properties was developed, which allows a multi-level evaluation of the process. By combining different measurement techniques, wear-dependent process characteristics can be determined and analyzed and, thus significantly reducing the measurement effort typically required.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063133","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
High-strength and corrosion-resistant materials, such as the nickel-based superalloy Inconel 718, are widely used in the energy and aerospace industries. However, machining these materials results in high process forces and significant tool wear. This tool wear has a negative effect on the resulting surface topography. Nevertheless, the accuracy requirements for functional surfaces are extreme high. Simulation systems can be used to design these processes. However, time-consuming and cost-intensive experiments often have to be conducted to develop and parameterize the required models. To overcome this problem, an analogy test setup for in-process measurements of wear-dependent properties was developed, which allows a multi-level evaluation of the process. By combining different measurement techniques, wear-dependent process characteristics can be determined and analyzed and, thus significantly reducing the measurement effort typically required.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining