G. S. Belova, Yu. V. Titova, A. P. Amosov, D. A. Maidan
{"title":"SHS of Highly Dispersed Si3N4–SiC Ceramic Composites from Si–NaN3–Na2SiF6–C Powder Mixture","authors":"G. S. Belova, Yu. V. Titova, A. P. Amosov, D. A. Maidan","doi":"10.3103/S1061386223010028","DOIUrl":null,"url":null,"abstract":"<p>Highly dispersed ceramic composites Si<sub>3</sub>N<sub>4</sub>–SiC were prepared by SHS under 4 MPa of nitrogen pressure from powder mixtures containing silicon, halide salt Na<sub>2</sub>SiF<sub>6</sub>, carbon, and sodium azide (NaN<sub>3</sub>) as a nitriding reagent. Variation in the silicon and carbon content in the green mixture affected the process parameters, structure, and phase composition of combustion products. It was found that the combustion product containing no more than 10% SiC represents a mixture of ultrafine equiaxed and fiber-like particles, and its composition coincides with the theoretically calculated one. At the SiC content more than 10%, the product compositions were distinctive from the theoretical compositions by a lower SiC content and had α- and β-Si<sub>3</sub>N<sub>4</sub> in almost equal amounts. Their structure was shown to contain ultrafine (150–300 nm) and coarse (up to 5 μm) particles.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 1","pages":"15 - 22"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223010028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Highly dispersed ceramic composites Si3N4–SiC were prepared by SHS under 4 MPa of nitrogen pressure from powder mixtures containing silicon, halide salt Na2SiF6, carbon, and sodium azide (NaN3) as a nitriding reagent. Variation in the silicon and carbon content in the green mixture affected the process parameters, structure, and phase composition of combustion products. It was found that the combustion product containing no more than 10% SiC represents a mixture of ultrafine equiaxed and fiber-like particles, and its composition coincides with the theoretically calculated one. At the SiC content more than 10%, the product compositions were distinctive from the theoretical compositions by a lower SiC content and had α- and β-Si3N4 in almost equal amounts. Their structure was shown to contain ultrafine (150–300 nm) and coarse (up to 5 μm) particles.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.