{"title":"Effects of Fe3+ in sillimanite on mineral stabilities and parageneses in ultrahigh-temperature metapelites","authors":"Bin Wang, Chunjing Wei","doi":"10.1111/jmg.12684","DOIUrl":null,"url":null,"abstract":"Based on the nature of ferric sillimanite, an activity model for sillimanite containing Fe3+ is constructed, tested and adopted to calculate phase equilibria of pelitic compositions under ultrahigh‐temperature (UHT) conditions. The calculated P–T projections and pseudosections suggest that the incorporation of Fe3+ into sillimanite can fairly solve the current imperfectly topological match between thermodynamic calculations and synthetic experiments, especially at high oxygen fugacity. Fe3+ in sillimanite remarkably elevates the temperature to switch the parageneses of orthopyroxene + sillimanite (Opx + Sil) and sapphirine + quartz (Spr + Qz) in oxidized metapelites, with an increment around 50–70°C. The calculated compatibility diagrams show that the widely approbatory UHT‐diagnostic mineral assemblages of Opx + Sil and Spr + Qz usually occur in metapelites with high Mg/Fe2+ ratios, which depend on both bulk‐rock MgO and oxygen fugacity, whereas the metapelites with low Mg/Fe2+ ratios are characterized by the assemblage of Garnet + sillimanite (Grt + Sil) with or without spinel (Spl) in UHT conditions. Moreover, comprehensive comparisons suggest that the essential petrogenetic framework of natural UHT metapelites is mostly governed by the two metamorphic reactions of Opx + Sil = Spr + Grt and Grt + Sil = Spl + Spr.","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12684","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Based on the nature of ferric sillimanite, an activity model for sillimanite containing Fe3+ is constructed, tested and adopted to calculate phase equilibria of pelitic compositions under ultrahigh‐temperature (UHT) conditions. The calculated P–T projections and pseudosections suggest that the incorporation of Fe3+ into sillimanite can fairly solve the current imperfectly topological match between thermodynamic calculations and synthetic experiments, especially at high oxygen fugacity. Fe3+ in sillimanite remarkably elevates the temperature to switch the parageneses of orthopyroxene + sillimanite (Opx + Sil) and sapphirine + quartz (Spr + Qz) in oxidized metapelites, with an increment around 50–70°C. The calculated compatibility diagrams show that the widely approbatory UHT‐diagnostic mineral assemblages of Opx + Sil and Spr + Qz usually occur in metapelites with high Mg/Fe2+ ratios, which depend on both bulk‐rock MgO and oxygen fugacity, whereas the metapelites with low Mg/Fe2+ ratios are characterized by the assemblage of Garnet + sillimanite (Grt + Sil) with or without spinel (Spl) in UHT conditions. Moreover, comprehensive comparisons suggest that the essential petrogenetic framework of natural UHT metapelites is mostly governed by the two metamorphic reactions of Opx + Sil = Spr + Grt and Grt + Sil = Spl + Spr.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.