Understanding the role of TEMPO-oxidized cellulose nanofiber on natural rubber latex nanocomposites

Q2 Materials Science Polymers from Renewable Resources Pub Date : 2022-08-01 DOI:10.1177/20412479221122271
Vijayalekshmi V, Poornima Vijayan P, M. Cd, Sabu Thomas
{"title":"Understanding the role of TEMPO-oxidized cellulose nanofiber on natural rubber latex nanocomposites","authors":"Vijayalekshmi V, Poornima Vijayan P, M. Cd, Sabu Thomas","doi":"10.1177/20412479221122271","DOIUrl":null,"url":null,"abstract":"Cellulose nanofibers (CNF) were isolated from raw cotton fibers via 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation process. The isolated CNF were morphologically characterized using Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Entangled fibrous morphology with diameter in nano regime (15–20 nm) has been observed for the isolated nanofibers. X-ray diffraction (XRD) analysis confirms the high crystallinity of the isolated CNF. Further, the isolated CNF was used to reinforce natural rubber (NR) latex films. The crystallographic, morphological, and spectroscopic analysis of the NR/CNF nanocomposites was carried out. A strong interaction between the CNF and NR matrix has been identified and which reflects in the thermal stability and swelling behavior of NR/CNF nanocomposite films in toluene. The uniform dispersion and tangling effect of CNF along with strong NR-CNF interaction restrict the uptake of solvent through NR matrix.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479221122271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose nanofibers (CNF) were isolated from raw cotton fibers via 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation process. The isolated CNF were morphologically characterized using Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Entangled fibrous morphology with diameter in nano regime (15–20 nm) has been observed for the isolated nanofibers. X-ray diffraction (XRD) analysis confirms the high crystallinity of the isolated CNF. Further, the isolated CNF was used to reinforce natural rubber (NR) latex films. The crystallographic, morphological, and spectroscopic analysis of the NR/CNF nanocomposites was carried out. A strong interaction between the CNF and NR matrix has been identified and which reflects in the thermal stability and swelling behavior of NR/CNF nanocomposite films in toluene. The uniform dispersion and tangling effect of CNF along with strong NR-CNF interaction restrict the uptake of solvent through NR matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解tempo氧化纤维素纳米纤维在天然胶乳纳米复合材料中的作用
采用2,2,6,6 -四甲基哌替啶-1-氧(TEMPO)氧化法从原棉纤维中分离得到纤维素纳米纤维(CNF)。利用场发射扫描电镜(FESEM)和透射电镜(TEM)对分离的CNF进行了形态表征。在纳米范围内(15 ~ 20 nm)观察到缠绕的纤维形态。x射线衍射(XRD)分析证实了分离的CNF的高结晶度。此外,分离的CNF被用于增强天然橡胶(NR)乳胶膜。对NR/CNF纳米复合材料进行了晶体学、形态学和光谱分析。CNF与NR基质之间存在强相互作用,这反映了NR/CNF纳米复合膜在甲苯中的热稳定性和膨胀行为。CNF的均匀分散和缠结效应以及强烈的NR-CNF相互作用限制了溶剂通过NR基质的吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers from Renewable Resources
Polymers from Renewable Resources Materials Science-Polymers and Plastics
CiteScore
3.50
自引率
0.00%
发文量
15
期刊介绍: Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.
期刊最新文献
Polymers from renewable resources: Drug delivery platforms for transdermal delivery Lactic acid-facilitated surface modification of nanocellulose extracted from Borassus flabellifer leaves Recent advances in enhancing thermoelectric performance of polymeric materials Exploring the performance of bio-based PLA/PHB blends: A comprehensive analysis Production of nanocomposite films based on low density polyethylene/surface activated nanoperlite for modified atmosphere packaging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1