Dimitri Percia David , Santiago Anton Moreno , Loïc Maréchal , Thomas Maillart , Alain Mermoud
{"title":"Forecasting labor needs for digitalization: A bi-partite graph machine learning approach","authors":"Dimitri Percia David , Santiago Anton Moreno , Loïc Maréchal , Thomas Maillart , Alain Mermoud","doi":"10.1016/j.wpi.2023.102193","DOIUrl":null,"url":null,"abstract":"<div><p>We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method based on a temporal bi-partite network, which combines local and global indices through a Support Vector Machine. We predict the appearance and disappearance of job openings from one to six months horizons. We show that global indices yield the highest predictive power, although the local network does contribute to long-term forecasts. At the one-month horizon, the “area under the curve” and the “average precision” are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our study highlights the link between the skilled workforce and the digital revolution and the policy implications regarding intellectual property and technology forecasting.</p></div>","PeriodicalId":51794,"journal":{"name":"World Patent Information","volume":"73 ","pages":"Article 102193"},"PeriodicalIF":2.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Patent Information","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0172219023000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 1
Abstract
We use a unique database of digital, and cybersecurity hires from Swiss organizations and develop a method based on a temporal bi-partite network, which combines local and global indices through a Support Vector Machine. We predict the appearance and disappearance of job openings from one to six months horizons. We show that global indices yield the highest predictive power, although the local network does contribute to long-term forecasts. At the one-month horizon, the “area under the curve” and the “average precision” are 0.984 and 0.905, respectively. At the six-month horizon, they reach 0.864 and 0.543, respectively. Our study highlights the link between the skilled workforce and the digital revolution and the policy implications regarding intellectual property and technology forecasting.
期刊介绍:
The aim of World Patent Information is to provide a worldwide forum for the exchange of information between people working professionally in the field of Industrial Property information and documentation and to promote the widest possible use of the associated literature. Regular features include: papers concerned with all aspects of Industrial Property information and documentation; new regulations pertinent to Industrial Property information and documentation; short reports on relevant meetings and conferences; bibliographies, together with book and literature reviews.