{"title":"Seismic responses of high‐rise structure under multiple‐component ground motions","authors":"W. Wei, Ying Hu, Y. Pi","doi":"10.1002/tal.2048","DOIUrl":null,"url":null,"abstract":"In this paper, we studied the responses of high‐rise structures under the multiple‐component ground motions, such as horizontal; coupled horizontal and rocking; and coupled horizontal, vertical, and rocking ground motion. First, the principle and process of obtaining the rotation component by using wavelet analysis are explained, and the rocking ground motion was obtained by wavelet analysis from translational ground motions. The correctness of this method was verified by shaking table tests. Next, the shaking table tests were performed on the scale model of a high‐rise TV tower under the horizontal, multiple ground motions. Under multiple ground motions, the amplitudes of the displacement and the acceleration increased to a certain extent, and the increased range of the acceleration was relatively larger. In addition, the displacement time‐history curve with the rocking ground motion showed an asymmetric offset. Subsequently, the dynamic equation of a high‐rise structure under the multiple ground motions was established, and the additional second‐order effect of the rocking ground motion was also considered. The results of the dynamic equation were well consistent with the shaking table test results, which verified the rationality and the accuracy of the dynamic equation. Besides, the result from the theoretical calculation and test indicated that the additional second‐order effect with the rocking ground motion that led to the ground tilting should not be ignored. In the last part, the elastic–plastic properties of the structure under the horizontal and rocking ground motion in the rare earthquake were analyzed. The displacement of the structure with the rocking ground motion increased significantly at the elastic–plastic stage, and the asymmetry deviation degree of the displacement and restoring force–displacement trend of the structure were more significant, which would impact the dynamic stability of the structure and even increase the possibility of structural collapse.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we studied the responses of high‐rise structures under the multiple‐component ground motions, such as horizontal; coupled horizontal and rocking; and coupled horizontal, vertical, and rocking ground motion. First, the principle and process of obtaining the rotation component by using wavelet analysis are explained, and the rocking ground motion was obtained by wavelet analysis from translational ground motions. The correctness of this method was verified by shaking table tests. Next, the shaking table tests were performed on the scale model of a high‐rise TV tower under the horizontal, multiple ground motions. Under multiple ground motions, the amplitudes of the displacement and the acceleration increased to a certain extent, and the increased range of the acceleration was relatively larger. In addition, the displacement time‐history curve with the rocking ground motion showed an asymmetric offset. Subsequently, the dynamic equation of a high‐rise structure under the multiple ground motions was established, and the additional second‐order effect of the rocking ground motion was also considered. The results of the dynamic equation were well consistent with the shaking table test results, which verified the rationality and the accuracy of the dynamic equation. Besides, the result from the theoretical calculation and test indicated that the additional second‐order effect with the rocking ground motion that led to the ground tilting should not be ignored. In the last part, the elastic–plastic properties of the structure under the horizontal and rocking ground motion in the rare earthquake were analyzed. The displacement of the structure with the rocking ground motion increased significantly at the elastic–plastic stage, and the asymmetry deviation degree of the displacement and restoring force–displacement trend of the structure were more significant, which would impact the dynamic stability of the structure and even increase the possibility of structural collapse.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.