X-ray zooming optics for analyzer-based multi-contrast computed tomography.

IF 2.4 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION Journal of Synchrotron Radiation Pub Date : 2022-05-01 Epub Date: 2022-03-15 DOI:10.1107/S1600577522001412
Keiichi Hirano, Hiroshi Sugiyama, Ryutaro Nishimura, Daisuke Wakabayashi, Yoshio Suzuki, Noriyuki Igarashi, Nobumasa Funamori
{"title":"X-ray zooming optics for analyzer-based multi-contrast computed tomography.","authors":"Keiichi Hirano, Hiroshi Sugiyama, Ryutaro Nishimura, Daisuke Wakabayashi, Yoshio Suzuki, Noriyuki Igarashi, Nobumasa Funamori","doi":"10.1107/S1600577522001412","DOIUrl":null,"url":null,"abstract":"<p><p>An X-ray analyzer-based optics with a zoom function is proposed for observing various samples with apparent-absorption contrast, phase contrast and scattering contrast. The proposed X-ray optics consists of a collimator crystal and an analyzer crystal arranged in a nondispersive (+, -) geometry with a sample placed between them. For the implementation of the zoom function, an asymmetrically cut crystal in the rotated-inclined geometry was used for the analyzer. Proof-of-principle experiments were performed at the vertical wiggler beamline BL-14B of the Photon Factory. First, the magnification was set to 1×, and then it was zoomed into the optimal magnification (10×). At these magnifications, tri-modal contrast cross-sectional images of a sample were obtained by computed tomography. It was confirmed that the image quality at 10× was superior to that at 1×. This achievement opens up new possibilities for observing an entire sample or regions of interest within a sample at optimal magnification, and is expected to be useful for materials science, condensed matter physics, archeology and biomedical science.</p>","PeriodicalId":17114,"journal":{"name":"Journal of Synchrotron Radiation","volume":"29 1","pages":"787-793"},"PeriodicalIF":2.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9070698/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577522001412","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

An X-ray analyzer-based optics with a zoom function is proposed for observing various samples with apparent-absorption contrast, phase contrast and scattering contrast. The proposed X-ray optics consists of a collimator crystal and an analyzer crystal arranged in a nondispersive (+, -) geometry with a sample placed between them. For the implementation of the zoom function, an asymmetrically cut crystal in the rotated-inclined geometry was used for the analyzer. Proof-of-principle experiments were performed at the vertical wiggler beamline BL-14B of the Photon Factory. First, the magnification was set to 1×, and then it was zoomed into the optimal magnification (10×). At these magnifications, tri-modal contrast cross-sectional images of a sample were obtained by computed tomography. It was confirmed that the image quality at 10× was superior to that at 1×. This achievement opens up new possibilities for observing an entire sample or regions of interest within a sample at optimal magnification, and is expected to be useful for materials science, condensed matter physics, archeology and biomedical science.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于基于分析器的多对比度计算机断层扫描的X射线变焦光学器件
提出了一种具有变焦功能的基于x射线分析仪的光学器件,用于观察各种样品的明显吸收对比、相位对比和散射对比。进行了原理验证实验,并在1倍和10倍放大下获得了样品的三模态对比截面图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.10
自引率
12.00%
发文量
289
审稿时长
4-8 weeks
期刊介绍: Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.
期刊最新文献
Operando double-edge high-resolution X-ray absorption spectroscopy study of BiVO4 photoanodes Development of dual-beamline photoelectron momentum microscopy for valence orbital analysis Measuring magnetic hysteresis curves with polarized soft X-ray resonant reflectivity High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources Iterative Bragg peak removal on X-ray absorption spectra with automatic intensity correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1