Subsurface Eddy Detection Optimized with Potential Vorticity from Models in the Arabian Sea

IF 1.9 4区 地球科学 Q2 ENGINEERING, OCEAN Journal of Atmospheric and Oceanic Technology Pub Date : 2023-03-24 DOI:10.1175/jtech-d-22-0121.1
P. Ernst, B. Subrahmanyam, Y. Morel, C. Trott, A. Chaigneau
{"title":"Subsurface Eddy Detection Optimized with Potential Vorticity from Models in the Arabian Sea","authors":"P. Ernst, B. Subrahmanyam, Y. Morel, C. Trott, A. Chaigneau","doi":"10.1175/jtech-d-22-0121.1","DOIUrl":null,"url":null,"abstract":"\nCoherent ocean vortices, or eddies, are usually tracked on the surface of the ocean. However, tracking subsurface eddies is important for a complete understanding of deep ocean circulation. In this study, we develop an algorithm designed for the detection of subsurface eddies in the Arabian Sea using Nucleus for European Modelling of the Ocean (NEMO) model simulations. We optimize each parameter of our algorithm to achieve favorable results when compared with an algorithm using sea surface height (SSH). When compared to similar methods, we find that using the rescaled isopycnal potential vorticity (PV) is best for subsurface eddy detection. We proceed to demonstrate that our new algorithm can detect eddies successfully between specific isopycnals, such as those that define the Red Sea Water (RSW). In doing so, we showcase how our method can be used to describe the properties of eddies within the RSW and even identify specific long-lived subsurface eddies. We conduct one such case study by discerning the structure of a completely subsurface RSW eddy near the Chagos Archipelago using Lagrangian particle tracking and PV diagnostics. We conclude that our rescaled PV method is an efficient tool for investigating eddy dynamics within the ocean’s interior, and publicly provide our optimization methodology as a way for other researchers to develop their own subsurface detection algorithms with optimized parameters for any spatiotemporal model domain.","PeriodicalId":15074,"journal":{"name":"Journal of Atmospheric and Oceanic Technology","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Oceanic Technology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jtech-d-22-0121.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 1

Abstract

Coherent ocean vortices, or eddies, are usually tracked on the surface of the ocean. However, tracking subsurface eddies is important for a complete understanding of deep ocean circulation. In this study, we develop an algorithm designed for the detection of subsurface eddies in the Arabian Sea using Nucleus for European Modelling of the Ocean (NEMO) model simulations. We optimize each parameter of our algorithm to achieve favorable results when compared with an algorithm using sea surface height (SSH). When compared to similar methods, we find that using the rescaled isopycnal potential vorticity (PV) is best for subsurface eddy detection. We proceed to demonstrate that our new algorithm can detect eddies successfully between specific isopycnals, such as those that define the Red Sea Water (RSW). In doing so, we showcase how our method can be used to describe the properties of eddies within the RSW and even identify specific long-lived subsurface eddies. We conduct one such case study by discerning the structure of a completely subsurface RSW eddy near the Chagos Archipelago using Lagrangian particle tracking and PV diagnostics. We conclude that our rescaled PV method is an efficient tool for investigating eddy dynamics within the ocean’s interior, and publicly provide our optimization methodology as a way for other researchers to develop their own subsurface detection algorithms with optimized parameters for any spatiotemporal model domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用阿拉伯海模型中的潜在涡度优化地下涡流探测
相干的海洋涡旋,或称涡流,通常在海洋表面被追踪。然而,追踪地下涡流对于全面了解深海环流非常重要。在这项研究中,我们开发了一种算法,用于使用欧洲海洋建模(NEMO)模型模拟的Nucleus检测阿拉伯海的地下涡旋。与使用海面高度(SSH)的算法相比,我们优化了算法的每个参数,以获得良好的结果。与类似方法相比,我们发现使用重新缩放的等密度位涡(PV)最适合于地下涡流检测。我们继续证明,我们的新算法可以成功地检测特定等密度线之间的涡流,例如定义红海(RSW)的等密度线。在这样做的过程中,我们展示了我们的方法如何用于描述RSW内涡流的特性,甚至识别特定的长寿命地下涡流。我们通过使用拉格朗日粒子跟踪和PV诊断来识别查戈斯群岛附近完全地下的RSW涡的结构,进行了一个这样的案例研究。我们得出结论,我们的重新缩放PV方法是研究海洋内部涡流动力学的有效工具,并公开提供我们的优化方法,作为其他研究人员开发自己的地下探测算法的一种方式,该算法具有任何时空模型域的优化参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.50
自引率
9.10%
发文量
135
审稿时长
3 months
期刊介绍: The Journal of Atmospheric and Oceanic Technology (JTECH) publishes research describing instrumentation and methods used in atmospheric and oceanic research, including remote sensing instruments; measurements, validation, and data analysis techniques from satellites, aircraft, balloons, and surface-based platforms; in situ instruments, measurements, and methods for data acquisition, analysis, and interpretation and assimilation in numerical models; and information systems and algorithms.
期刊最新文献
Synergistic retrievals of ice in high clouds from elastic backscatter lidar, Ku-band radar and submillimeter wave radiometer observations A Versatile Calibration Method for Rotary-Wing UAS as Wind Measurement Systems A Case of Idiopathic Intracranial Hypertension/Pseudotumor Cerebri Syndrome Cured by Myomectomy. Optimum Estimation of Coastal Currents Using Moving Vehicles Evaluation and Intercomparison of Small Uncrewed Aircraft Systems Used for Atmospheric Research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1