{"title":"Conservation Laws and Symmetry Reductions of the Hunter–Saxton Equation via the Double Reduction Method","authors":"Molahlehi Charles Kakuli, W. Sinkala, P. Masemola","doi":"10.3390/mca28050092","DOIUrl":null,"url":null,"abstract":"This study investigates via Lie symmetry analysis the Hunter–Saxton equation, an equation relevant to the theoretical analysis of nematic liquid crystals. We employ the multiplier method to obtain conservation laws of the equation that arise from first-order multipliers. Conservation laws of the equation, combined with the admitted Lie point symmetries, enable us to perform symmetry reductions by employing the double reduction method. The method exploits the relationship between symmetries and conservation laws to reduce both the number of variables and the order of the equation. Five nontrivial conservation laws of the Hunter–Saxton equation are derived, four of which are found to have associated Lie point symmetries. Applying the double reduction method to the equation results in a set of first-order ordinary differential equations, the solutions of which represent invariant solutions for the equation. While the double reduction method may be more complex to implement than the classical method, since it involves finding Lie point symmetries and deriving conservation laws, it has some advantages over the classical method of reducing PDEs. Firstly, it is more efficient in that it can reduce the number of variables and order of the equation in a single step. Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy important physical constraints can be obtained.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28050092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates via Lie symmetry analysis the Hunter–Saxton equation, an equation relevant to the theoretical analysis of nematic liquid crystals. We employ the multiplier method to obtain conservation laws of the equation that arise from first-order multipliers. Conservation laws of the equation, combined with the admitted Lie point symmetries, enable us to perform symmetry reductions by employing the double reduction method. The method exploits the relationship between symmetries and conservation laws to reduce both the number of variables and the order of the equation. Five nontrivial conservation laws of the Hunter–Saxton equation are derived, four of which are found to have associated Lie point symmetries. Applying the double reduction method to the equation results in a set of first-order ordinary differential equations, the solutions of which represent invariant solutions for the equation. While the double reduction method may be more complex to implement than the classical method, since it involves finding Lie point symmetries and deriving conservation laws, it has some advantages over the classical method of reducing PDEs. Firstly, it is more efficient in that it can reduce the number of variables and order of the equation in a single step. Secondly, by incorporating conservation laws, physically meaningful solutions that satisfy important physical constraints can be obtained.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.