Identical damped harmonic oscillators described by coherent states

IF 0.7 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Quantum Information Pub Date : 2022-09-02 DOI:10.1142/S0219749923500119
S. Mousavi
{"title":"Identical damped harmonic oscillators described by coherent states","authors":"S. Mousavi","doi":"10.1142/S0219749923500119","DOIUrl":null,"url":null,"abstract":"Some aspects of quantum damped harmonic oscillator (DHO) obeying a Markovian master equation are considered in the absence of thermal noise. The continuity equation is derived and Bohmian trajectories are constructed. As a solution of the master equation, we take a single coherent state and compute analytically the relative entropy of coherence, $C_r$, in the energy, position and momentum bases. Although $C_r$ is constant in both the position and the momentum bases, it is a decreasing function of time in the energy basis becoming zero at long times, revealing its role as the preferred basis. Then, quantum coherence is computed for a superposition of two coherent states, a cat state, and also a superposition of two cat states in the energy basis as a function of separation, in the complex plane, between the two superposed states. It is seen that the quantum coherence increases with this separation. Furthermore, quantum coherence of superposition is compared to that of decomposed states in the superposition. Finally, considering a system of two non-interacting DHOs, the effect of quantum statistics is studied on the coherence of reduced single-particle states, the joint detection probability and the mean square separation of particles. Our computations show that the single-particle coherence for antisymmetric states is always less than that of symmetric ones. Furthermore, boson anti-bunching and fermion bunching is seen in this open system. This behavior of bosons is the matter-wave analogue of photon anti-bunching seen in a modified Hanbury Brown-Twiss (HBT) interferometer.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0219749923500119","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Some aspects of quantum damped harmonic oscillator (DHO) obeying a Markovian master equation are considered in the absence of thermal noise. The continuity equation is derived and Bohmian trajectories are constructed. As a solution of the master equation, we take a single coherent state and compute analytically the relative entropy of coherence, $C_r$, in the energy, position and momentum bases. Although $C_r$ is constant in both the position and the momentum bases, it is a decreasing function of time in the energy basis becoming zero at long times, revealing its role as the preferred basis. Then, quantum coherence is computed for a superposition of two coherent states, a cat state, and also a superposition of two cat states in the energy basis as a function of separation, in the complex plane, between the two superposed states. It is seen that the quantum coherence increases with this separation. Furthermore, quantum coherence of superposition is compared to that of decomposed states in the superposition. Finally, considering a system of two non-interacting DHOs, the effect of quantum statistics is studied on the coherence of reduced single-particle states, the joint detection probability and the mean square separation of particles. Our computations show that the single-particle coherence for antisymmetric states is always less than that of symmetric ones. Furthermore, boson anti-bunching and fermion bunching is seen in this open system. This behavior of bosons is the matter-wave analogue of photon anti-bunching seen in a modified Hanbury Brown-Twiss (HBT) interferometer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用相干态描述的相同阻尼谐振子
在没有热噪声的情况下,考虑了服从马尔可夫主方程的量子阻尼谐振子(DHO)的某些方面。导出了连续性方程,构造了Bohmian轨迹。作为主方程的一个解,我们取一个相干态,解析计算相干在能量、位置和动量基中的相对熵$C_r$。尽管$C_r$在位置基和动量基中都是常数,但它是能量基中时间的递减函数,在长时间变为零,揭示了它作为优选基的作用。然后,计算两个相干态的叠加,一个cat态,以及作为两个叠加态之间在复平面中的分离的函数的两个cat态在能量基中的叠加的量子相干。可以看出,量子相干性随着这种分离而增加。此外,还将叠加态的量子相干性与分解态的量子相干性进行了比较。最后,考虑两个非相互作用的DHO系统,研究了量子统计对减少的单粒子态的相干性、联合检测概率和粒子的均方分离的影响。我们的计算表明,反对称态的单粒子相干性总是小于对称态的单颗粒相干性。此外,在这个开放系统中可以看到玻色子反聚束和费米子聚束。玻色子的这种行为是在改进的汉伯里-布朗-特维斯(HBT)干涉仪中看到的光子反聚束的物质波模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Quantum Information
International Journal of Quantum Information 物理-计算机:理论方法
CiteScore
2.20
自引率
8.30%
发文量
36
审稿时长
10 months
期刊介绍: The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research: Quantum Cryptography Quantum Computation Quantum Communication Fundamentals of Quantum Mechanics Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.
期刊最新文献
Low-ground/High-ground capacity regions analysis for bosonic gaussian channels Interpreting symplectic linear transformations in a two-qubit phase space Continuity of the relative entropy of resource Alexander S. Holevo’s researches in quantum information theory in 20th century Pretty good measurement for bosonic Gaussian ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1