首页 > 最新文献

International Journal of Quantum Information最新文献

英文 中文
Low-ground/High-ground capacity regions analysis for bosonic gaussian channels 玻色高斯信道的低地/高地容量区域分析
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-05-31 DOI: 10.1142/s0219749924400057
Farzad Kianvash, Marco Fanizza, Vittorio Giovannetti

We present a comprehensive characterization of the interconnections between single-mode, phase-insensitive Gaussian Bosonic Channels resulting from channel concatenation. This characterization enables us to identify, in the parameter space of these maps, two distinct regions: low-ground and high-ground. In the low-ground region, the information capacities are smaller than a designated reference value, while in the high-ground region, they are provably greater. As a direct consequence, we systematically outline an explicit set of upper bounds for the quantum and private capacity of these maps, which combine known upper bounds and composition rules, improving upon existing results.

我们全面描述了通道连接产生的单模、相位不敏感高斯玻色通道之间的互连。这种表征使我们能够在这些映射的参数空间中识别出两个不同的区域:低地和高地。在低地区域,信息容量小于指定的参考值,而在高地区域,信息容量明显大于指定的参考值。作为直接结果,我们系统地概述了这些映射的量子容量和私人容量的一组明确上限,它们结合了已知上限和组成规则,改进了现有结果。
{"title":"Low-ground/High-ground capacity regions analysis for bosonic gaussian channels","authors":"Farzad Kianvash, Marco Fanizza, Vittorio Giovannetti","doi":"10.1142/s0219749924400057","DOIUrl":"https://doi.org/10.1142/s0219749924400057","url":null,"abstract":"<p>We present a comprehensive characterization of the interconnections between single-mode, phase-insensitive Gaussian Bosonic Channels resulting from channel concatenation. This characterization enables us to identify, in the parameter space of these maps, two distinct regions: low-ground and high-ground. In the low-ground region, the information capacities are smaller than a designated reference value, while in the high-ground region, they are provably greater. As a direct consequence, we systematically outline an explicit set of upper bounds for the quantum and private capacity of these maps, which combine known upper bounds and composition rules, improving upon existing results.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141252625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpreting symplectic linear transformations in a two-qubit phase space 解读双量子比特相空间中的交映线性变换
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-05-31 DOI: 10.1142/s0219749924400148
William K. Wootters

For the continuous Wigner function and for certain discrete Wigner functions, permuting the values of the Wigner function in accordance with a symplectic linear transformation is equivalent to performing a certain unitary transformation on the state. That is, performing this unitary transformation is simply a matter of moving Wigner-function values around in phase space. This result holds in particular for the simplest discrete Wigner function defined on a d×d phase space when the Hilbert-space dimension d is odd. It does not hold for a d×d phase space if the dimension is even. Here we show, though, that a generalized version of this correspondence does apply in the case of a two-qubit phase space. In this case, a symplectic linear permutation of the points of the phase space, together with a certain reinterpretation of the Wigner function, is equivalent to a unitary transformation.

对于连续维格纳函数和某些离散维格纳函数来说,按照交映线性变换对维格纳函数值进行排列,就等同于对状态进行某种单元变换。也就是说,进行这种单位变换只是在相空间中移动维格纳函数值。当希尔伯特空间维数 d 为奇数时,这一结果尤其适用于定义在 d×d 相空间上的最简单离散维格纳函数。如果维数为偶数,则 d×d 相空间不成立。不过,我们在这里证明,这种对应关系的广义版本确实适用于双量子比特相空间。在这种情况下,相空间各点的交折线性排列,再加上对维格纳函数的某种重新解释,就等同于单位变换。
{"title":"Interpreting symplectic linear transformations in a two-qubit phase space","authors":"William K. Wootters","doi":"10.1142/s0219749924400148","DOIUrl":"https://doi.org/10.1142/s0219749924400148","url":null,"abstract":"<p>For the continuous Wigner function and for certain discrete Wigner functions, permuting the values of the Wigner function in accordance with a symplectic linear transformation is equivalent to performing a certain unitary transformation on the state. That is, performing this unitary transformation is simply a matter of moving Wigner-function values around in phase space. This result holds in particular for the simplest discrete Wigner function defined on a <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>d</mi><mo stretchy=\"false\">×</mo><mi>d</mi></math></span><span></span> phase space when the Hilbert-space dimension <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>d</mi></math></span><span></span> is odd. It does not hold for a <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>d</mi><mo stretchy=\"false\">×</mo><mi>d</mi></math></span><span></span> phase space if the dimension is even. Here we show, though, that a generalized version of this correspondence does apply in the case of a two-qubit phase space. In this case, a symplectic linear permutation of the points of the phase space, together with a certain reinterpretation of the Wigner function, is equivalent to a unitary transformation.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuity of the relative entropy of resource 资源相对熵的连续性
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-05-29 DOI: 10.1142/s0219749924400094
Ludovico Lami, Maksim Shirokov

We present a criterion to establish the local continuity of the relative entropy of resource, i.e. the relative entropy distance to the set of free states, in any quantum resource theory. Several basic corollaries of this criterion are presented. Applications to the relative entropy of entanglement in multipartite quantum systems are considered. It is shown, in particular, that local continuity of any relative entropy of multipartite entanglement follows from local continuity of the quantum mutual information.

我们提出了一个标准,用以确定任何量子资源理论中资源相对熵的局部连续性,即与自由态集合的相对熵距离。我们提出了这一准则的几个基本推论。还考虑了多方量子系统中纠缠的相对熵的应用。研究特别表明,任何多方纠缠相对熵的局部连续性都来自量子互信息的局部连续性。
{"title":"Continuity of the relative entropy of resource","authors":"Ludovico Lami, Maksim Shirokov","doi":"10.1142/s0219749924400094","DOIUrl":"https://doi.org/10.1142/s0219749924400094","url":null,"abstract":"<p>We present a criterion to establish the local continuity of the relative entropy of resource, i.e. the relative entropy distance to the set of free states, in any quantum resource theory. Several basic corollaries of this criterion are presented. Applications to the relative entropy of entanglement in multipartite quantum systems are considered. It is shown, in particular, that local continuity of any relative entropy of multipartite entanglement follows from local continuity of the quantum mutual information.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"52 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pretty good measurement for bosonic Gaussian ensembles 对玻色高斯集合的测量相当精确
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-05-25 DOI: 10.1142/s0219749924400100
Hemant K. Mishra, Ludovico Lami, Prabha Mandayam, Mark M. Wilde

The pretty good measurement is a fundamental analytical tool in quantum information theory, giving a method for inferring the classical label that identifies a quantum state chosen probabilistically from an ensemble. Identifying and constructing the pretty good measurement for the class of bosonic Gaussian states is of immediate practical relevance in quantum information processing tasks. Holevo recently showed that the pretty good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement that attains the accessible information of the ensemble [IEEE Trans. Inf. Theory66(9) (2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty good measurement for a Gaussian ensemble of multimode bosonic states, with a focus on establishing an explicit and efficiently computable Gaussian description of the measurement. We also compute an explicit form of the mean square error of the pretty good measurement, which is relevant when using it for parameter estimation.

Generalizing the pretty good measurement is a quantum instrument, called the pretty good instrument. We prove that the post-measurement state of the pretty good instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose covariance matrix satisfies a certain condition. Combined with our previous finding for the pretty good measurement and provided that the same condition holds, it follows that the expected output state is a faithful Gaussian state as well. In this case, we compute an explicit Gaussian description of the post-measurement and expected output states. Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is no longer merely an analytical tool, but that it can also be implemented experimentally in quantum optics laboratories.

相当好测量是量子信息论中的一个基本分析工具,它提供了一种推断经典标签的方法,该标签可识别从集合中概率选择的量子态。识别和构建玻色高斯态的 "相当好测量 "对量子信息处理任务具有直接的实际意义。Holevo 最近证明,玻色高斯集合的相当好测量是一种玻色高斯测量,它能获得集合的可获取信息 [IEEE Trans. Inf. Theory66(9) (2020) 5634]。在本文中,我们为多模玻色态高斯集合的相当好测量提供了另一种高斯性证明,重点是建立测量的显式和高效可计算的高斯描述。我们还计算了相当好测量的均方误差的显式形式,这在使用它进行参数估计时非常重要。我们证明,如果输入状态是忠实的高斯状态,其协方差矩阵满足一定条件,那么漂亮仪器的测量后状态就是忠实的高斯状态。结合我们之前对 "相当好 "测量的发现,如果同样的条件成立,那么预期输出状态也是一个忠实的高斯状态。在这种情况下,我们计算出测量后和预期输出状态的明确高斯描述。我们的发现意味着玻色高斯集合的相当好仪器不再仅仅是一个分析工具,它也可以在量子光学实验室中实验性地实现。
{"title":"Pretty good measurement for bosonic Gaussian ensembles","authors":"Hemant K. Mishra, Ludovico Lami, Prabha Mandayam, Mark M. Wilde","doi":"10.1142/s0219749924400100","DOIUrl":"https://doi.org/10.1142/s0219749924400100","url":null,"abstract":"<p>The pretty good measurement is a fundamental analytical tool in quantum information theory, giving a method for inferring the classical label that identifies a quantum state chosen probabilistically from an ensemble. Identifying and constructing the pretty good measurement for the class of bosonic Gaussian states is of immediate practical relevance in quantum information processing tasks. Holevo recently showed that the pretty good measurement for a bosonic Gaussian ensemble is a bosonic Gaussian measurement that attains the accessible information of the ensemble [<i>IEEE Trans. Inf. Theory</i><b>66</b>(9) (2020) 5634]. In this paper, we provide an alternate proof of Gaussianity of the pretty good measurement for a Gaussian ensemble of multimode bosonic states, with a focus on establishing an explicit and efficiently computable Gaussian description of the measurement. We also compute an explicit form of the mean square error of the pretty good measurement, which is relevant when using it for parameter estimation.</p><p>Generalizing the pretty good measurement is a quantum instrument, called the pretty good instrument. We prove that the post-measurement state of the pretty good instrument is a faithful Gaussian state if the input state is a faithful Gaussian state whose covariance matrix satisfies a certain condition. Combined with our previous finding for the pretty good measurement and provided that the same condition holds, it follows that the expected output state is a faithful Gaussian state as well. In this case, we compute an explicit Gaussian description of the post-measurement and expected output states. Our findings imply that the pretty good instrument for bosonic Gaussian ensembles is no longer merely an analytical tool, but that it can also be implemented experimentally in quantum optics laboratories.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"37 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alexander S. Holevo’s researches in quantum information theory in 20th century 亚历山大-S-霍列沃在 20 世纪对量子信息论的研究
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-05-25 DOI: 10.1142/s0219749924400069
Masahito Hayashi

This paper reviews Holevo’s contributions to quantum information theory during the 20 century. At that time, he mainly studied three topics, classical-quantum channel coding, quantum estimation with Craméro–Rao approach and quantum estimation with the group covariant approach. This paper addresses these three topics.

本文回顾了霍勒沃在 20 世纪对量子信息论的贡献。当时,他主要研究了三个课题:经典-量子信道编码、克拉梅罗-拉奥方法的量子估计和群协变方法的量子估计。本文主要讨论这三个课题。
{"title":"Alexander S. Holevo’s researches in quantum information theory in 20th century","authors":"Masahito Hayashi","doi":"10.1142/s0219749924400069","DOIUrl":"https://doi.org/10.1142/s0219749924400069","url":null,"abstract":"<p>This paper reviews Holevo’s contributions to quantum information theory during the 20 century. At that time, he mainly studied three topics, classical-quantum channel coding, quantum estimation with Craméro–Rao approach and quantum estimation with the group covariant approach. This paper addresses these three topics.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"19 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141257045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symbols of mixed unitary quantum channels generated by finite unitary groups 有限单元群生成的混合单元量子信道的符号
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-05-20 DOI: 10.1142/s021974992440001x
Grigori G. Amosov, Danil D. Cheremukhin

We study the symbols of linear operators generated by a finite unitary group. Under some assumptions, it is shown that the operator can be restored from its symbol. We also introduce symbols of mixed unitary quantum channels generated by finite unitary groups. An example illustrating the technique is given.

我们研究由有限单元群生成的线性算子的符号。研究表明,在某些假设条件下,算子可以从其符号中还原出来。我们还介绍了由有限单元群生成的混合单元量子通道的符号。举例说明了这一技术。
{"title":"Symbols of mixed unitary quantum channels generated by finite unitary groups","authors":"Grigori G. Amosov, Danil D. Cheremukhin","doi":"10.1142/s021974992440001x","DOIUrl":"https://doi.org/10.1142/s021974992440001x","url":null,"abstract":"<p>We study the symbols of linear operators generated by a finite unitary group. Under some assumptions, it is shown that the operator can be restored from its symbol. We also introduce symbols of mixed unitary quantum channels generated by finite unitary groups. An example illustrating the technique is given.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"60 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141259911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote restoring of (0,1)-excitation states and concurrence scaling (0,1)-激发态的远程恢复和并发缩放
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-04-20 DOI: 10.1142/s0219749924500205
N. A. Tashkeev, A. I. Zenchuk

We study the long distance (0,1)-excitation state restoring in the linear open chain governed by the XX-Hamiltonian. We show that restoring the 1-order coherence matrix results in restoring the 1-excitation block of the 0-order coherence matrix, so that only one 0-excitation element of the density matrix remains unrestored. Such restoring also scales the concurrence between any two qubits of the transferred state, the scaling factor is defined by the Hamiltonian and doesn’t depend on the initial sender’s state. Sender–Receiver entanglement is also studied via the PPT criterion.

我们研究了由 XX-Hamiltonian 控制的线性开放链中的长距离(0,1)激发态复原。我们证明,还原 1 阶相干矩阵会导致还原 0 阶相干矩阵中的 1 阶激发块,因此密度矩阵中只有一个 0 阶激发元素没有被还原。这种还原也会缩放转移态任意两个量子比特之间的一致性,缩放因子由哈密顿定义,与发送者的初始状态无关。发送方与接收方的纠缠也是通过 PPT 准则来研究的。
{"title":"Remote restoring of (0,1)-excitation states and concurrence scaling","authors":"N. A. Tashkeev, A. I. Zenchuk","doi":"10.1142/s0219749924500205","DOIUrl":"https://doi.org/10.1142/s0219749924500205","url":null,"abstract":"<p>We study the long distance <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>-excitation state restoring in the linear open chain governed by the <i>XX</i>-Hamiltonian. We show that restoring the 1-order coherence matrix results in restoring the 1-excitation block of the 0-order coherence matrix, so that only one 0-excitation element of the density matrix remains unrestored. Such restoring also scales the concurrence between any two qubits of the transferred state, the scaling factor is defined by the Hamiltonian and doesn’t depend on the initial sender’s state. Sender–Receiver entanglement is also studied via the PPT criterion.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140636948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable quantum neural networks by few quantum resources 通过少量量子资源实现可扩展量子神经网络
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-04-18 DOI: 10.1142/s0219749924500187
Davide Pastorello, Enrico Blanzieri

This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.

本文的重点是构建一个通用参数模型,该模型可以在几个量子比特上执行多个交换测试,并应用合适的测量协议。该模型等同于双层前馈神经网络,可结合小型量子模块实现。本文讨论了拟议量子方法的优势和前景。
{"title":"Scalable quantum neural networks by few quantum resources","authors":"Davide Pastorello, Enrico Blanzieri","doi":"10.1142/s0219749924500187","DOIUrl":"https://doi.org/10.1142/s0219749924500187","url":null,"abstract":"<p>This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"25 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum key distribution based on the quantum eraser 基于量子橡皮擦的量子密钥分发
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-04-09 DOI: 10.1142/s0219749924500102
Tarek A. Elsayed

Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses. Many of the fundamental concepts and applications in these two fields, such as delayed choice experiments and quantum encryption, are comprehensible to undergraduates with basic knowledge of quantum mechanics. In this paper, we show that the quantum eraser, usually used to study the duality between wave and particle properties, can also serve as a generic platform for quantum key distribution. We present a pedagogical example of an algorithm to securely share random keys using the quantum eraser platform and propose its implementation with quantum circuits.

量子信息和量子基础正在成为本科生高级课程的热门话题。这两个领域的许多基本概念和应用,如延迟选择实验和量子加密,对于具有量子力学基础知识的本科生来说都是可以理解的。在本文中,我们展示了通常用于研究波与粒子特性二元性的量子橡皮擦也可以作为量子密钥分发的通用平台。我们举例说明了利用量子橡皮擦平台安全共享随机密钥的算法,并提出了用量子电路实现该算法的建议。
{"title":"Quantum key distribution based on the quantum eraser","authors":"Tarek A. Elsayed","doi":"10.1142/s0219749924500102","DOIUrl":"https://doi.org/10.1142/s0219749924500102","url":null,"abstract":"<p>Quantum information and quantum foundations are becoming popular topics for advanced undergraduate courses. Many of the fundamental concepts and applications in these two fields, such as delayed choice experiments and quantum encryption, are comprehensible to undergraduates with basic knowledge of quantum mechanics. In this paper, we show that the quantum eraser, usually used to study the duality between wave and particle properties, can also serve as a generic platform for quantum key distribution. We present a pedagogical example of an algorithm to securely share random keys using the quantum eraser platform and propose its implementation with quantum circuits.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"48 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140563130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum multi-secret sharing scheme with access structures and cheat identification 具有访问结构和作弊识别功能的量子多机密共享方案
IF 1.2 4区 物理与天体物理 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2024-03-21 DOI: 10.1142/s0219749924500151
Deepa Rathi, Sanjeev Kumar

This work proposes a d-dimensional quantum multi-secret sharing scheme with a cheat-detection mechanism. The dealer creates multiple secrets and distributes the shares of these secrets using multi-access structures and a monotone span program. The dealer detects the cheating of each participant using the black box’s cheat-detection mechanism. To detect the participants’ deceit, the dealer distributes secret shares’ shadows derived from a randomly invertible matrix X to the participants, stored in the black box. The black box identifies the participant’s deceitful behavior during the secret recovery phase. Only honest participants authenticated by the black box acquire their secret shares to recover the multiple secrets. After the black box cheating verification, the participants reconstruct the secrets by utilizing the unitary operations and quantum Fourier transform. The proposed protocol is reliable in preventing attacks from eavesdroppers and participants. The scheme’s efficiency is demonstrated in different noise environments: dit-flip noise, d-phase-flip noise and amplitude-damping noise, indicating its robustness in practical scenarios. The proposed protocol provides greater versatility, security and practicality.

这项研究提出了一种具有作弊检测机制的 d 维量子多秘密共享方案。交易者使用多访问结构和单调跨度程序创建多个秘密并分配这些秘密的份额。庄家利用黑盒的作弊检测机制检测每个参与者的作弊行为。为了检测参与者的欺骗行为,庄家会将存储在黑盒中的随机可逆矩阵 X 得出的秘密份额阴影分配给参与者。黑盒会在秘密恢复阶段识别参与者的欺骗行为。只有通过黑盒验证的诚实参与者才能获得他们的秘密份额,从而恢复多个秘密。黑盒验证作弊行为后,参与者利用单元运算和量子傅里叶变换重建秘密。所提出的协议能可靠地防止窃听者和参与者的攻击。该方案在不同的噪声环境中都表现出了高效性:dit-flip 噪声、d-phase-flip 噪声和振幅阻尼噪声,表明其在实际应用中的鲁棒性。所提出的协议具有更高的通用性、安全性和实用性。
{"title":"Quantum multi-secret sharing scheme with access structures and cheat identification","authors":"Deepa Rathi, Sanjeev Kumar","doi":"10.1142/s0219749924500151","DOIUrl":"https://doi.org/10.1142/s0219749924500151","url":null,"abstract":"<p>This work proposes a <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi></math></span><span></span>-dimensional quantum multi-secret sharing scheme with a cheat-detection mechanism. The dealer creates multiple secrets and distributes the shares of these secrets using multi-access structures and a monotone span program. The dealer detects the cheating of each participant using the black box’s cheat-detection mechanism. To detect the participants’ deceit, the dealer distributes secret shares’ shadows derived from a randomly invertible matrix <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>X</mi></math></span><span></span> to the participants, stored in the black box. The black box identifies the participant’s deceitful behavior during the secret recovery phase. Only honest participants authenticated by the black box acquire their secret shares to recover the multiple secrets. After the black box cheating verification, the participants reconstruct the secrets by utilizing the unitary operations and quantum Fourier transform. The proposed protocol is reliable in preventing attacks from eavesdroppers and participants. The scheme’s efficiency is demonstrated in different noise environments: dit-flip noise, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi></math></span><span></span>-phase-flip noise and amplitude-damping noise, indicating its robustness in practical scenarios. The proposed protocol provides greater versatility, security and practicality.</p>","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":"20 1","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140205673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Quantum Information
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1