Self-Supervised Learning of Spatially Varying Process Parameter Models for Robotic Finishing Tasks

IF 2.6 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computing and Information Science in Engineering Pub Date : 2023-08-29 DOI:10.1115/1.4063276
Yeo Jung Yoon, Santosh V. Narayan, S. Gupta
{"title":"Self-Supervised Learning of Spatially Varying Process Parameter Models for Robotic Finishing Tasks","authors":"Yeo Jung Yoon, Santosh V. Narayan, S. Gupta","doi":"10.1115/1.4063276","DOIUrl":null,"url":null,"abstract":"\n This paper presents a self-supervised learning approach for a robot to learn spatially varying process parameter models for contact-based finishing tasks. In many finishing tasks, a part has spatially varying stiffness. Some regions of the part enable the robot to efficiently execute the task. On the other hand, some other regions on the part may require the robot to move cautiously in order to prevent damage and ensure safety. Compared to the constant process parameter models, spatially varying process parameter models are more complex and challenging to learn. Our self-supervised learning approach consists of utilizing an initial parameter space exploration method, surrogate modeling, selection of region sequencing policy, and development of process parameter selection policy. We showed that by carefully selecting and optimizing learning components, this approach enables a robot to efficiently learn spatially varying process parameter models for a given contact-based finishing task. We demonstrated the effectiveness of our approach through computational simulations and physical experiments with a robotic sanding case study. Our work shows that the learning approach that has been optimized based on task characteristics significantly outperforms an unoptimized learning approach based on the overall task completion time.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a self-supervised learning approach for a robot to learn spatially varying process parameter models for contact-based finishing tasks. In many finishing tasks, a part has spatially varying stiffness. Some regions of the part enable the robot to efficiently execute the task. On the other hand, some other regions on the part may require the robot to move cautiously in order to prevent damage and ensure safety. Compared to the constant process parameter models, spatially varying process parameter models are more complex and challenging to learn. Our self-supervised learning approach consists of utilizing an initial parameter space exploration method, surrogate modeling, selection of region sequencing policy, and development of process parameter selection policy. We showed that by carefully selecting and optimizing learning components, this approach enables a robot to efficiently learn spatially varying process parameter models for a given contact-based finishing task. We demonstrated the effectiveness of our approach through computational simulations and physical experiments with a robotic sanding case study. Our work shows that the learning approach that has been optimized based on task characteristics significantly outperforms an unoptimized learning approach based on the overall task completion time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人加工任务中空间变化过程参数模型的自监督学习
本文提出了一种机器人的自监督学习方法,用于学习基于接触的精加工任务的空间变化过程参数模型。在许多精加工任务中,零件具有空间变化的刚度。零件的某些区域使机器人能够有效地执行任务。另一方面,零件上的其他一些区域可能需要机器人谨慎移动,以防止损坏并确保安全。与恒定过程参数模型相比,空间变化过程参数模型更复杂,学习起来更具挑战性。我们的自监督学习方法包括利用初始参数空间探索方法、代理建模、区域排序策略的选择和过程参数选择策略的开发。我们表明,通过仔细选择和优化学习组件,这种方法使机器人能够有效地学习给定基于接触的精加工任务的空间变化过程参数模型。我们通过机器人打磨案例研究的计算模拟和物理实验证明了我们方法的有效性。我们的工作表明,基于任务特征进行优化的学习方法显著优于基于整体任务完成时间的未优化学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
12.90%
发文量
100
审稿时长
6 months
期刊介绍: The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications. Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping
期刊最新文献
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics Comparative Analysis of CNN Architectures for Automated Knee Segmentation in Medical Imaging: a Performance Evaluation A Novel Approach to Line Clipping Against a Rectangular Window Layered Security Guidance for Data Asset Management in Additive Manufacturing. Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1