首页 > 最新文献

Journal of Computing and Information Science in Engineering最新文献

英文 中文
Comparative Analysis of CNN Architectures for Automated Knee Segmentation in Medical Imaging: a Performance Evaluation 用于医学影像中膝关节自动分割的 CNN 架构比较分析:性能评估
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-08 DOI: 10.1115/1.4064450
Anna Ghidotti, A. Vitali, D. Regazzoni, Miri Weiss Cohen, C. Rizzi
Segmentation of anatomical components is a major step in creating accurate and realistic 3D models of the human body, which are used in many clinical applications, including orthopedics. Recently, many deep learning approaches have been proposed to solve the problem of manual segmentation, that is time-consuming and operator-dependent. In the present study, SegResNet has been adapted from other domains, such as brain tumor, to segment knee bones from Magnetic Resonance images. This algorithm has been compared to the well-known U-Net in terms of evaluation metrics, such as Dice Similarity Coefficient and Hausdorff Distance. In the training phase, various combinations of hyper-parameters, such as epochs and learning rates, have been tested to determine which combination produced the most accurate results. Based on their comparable results, both U-Net and SegResNet performed well in accurately segmenting the femur. Dice Similarity Coefficients of 0.94 and Hausdorff Distances less than or equal to 1 mm indicate that both models are effective at capturing anatomical boundaries in the femur. According to the results of this study, SegResNet is a viable option for automating the creation of 3D femur models. In the future, the performance and applicability of SegResNet in real-world settings will be further validated and tested using a variety of datasets and clinical scenarios.
解剖组件的分割是创建精确逼真的人体 3D 模型的重要步骤,这些模型被用于包括骨科在内的许多临床应用中。最近,许多深度学习方法被提出来解决人工分割的问题,而人工分割既耗时又依赖于操作者。在本研究中,SegResNet 从其他领域(如脑肿瘤)改编而来,用于从磁共振图像中分割膝盖骨。在评估指标(如骰子相似系数和豪斯多夫距离)方面,该算法与著名的 U-Net 进行了比较。在训练阶段,测试了各种超参数组合,如历时和学习率,以确定哪种组合能产生最准确的结果。根据它们的可比结果,U-Net 和 SegResNet 在准确分割股骨方面都表现出色。骰子相似系数为 0.94,豪斯多夫距离小于或等于 1 毫米,这表明两个模型都能有效捕捉股骨的解剖边界。根据这项研究的结果,SegResNet 是自动创建三维股骨模型的可行选择。未来,SegResNet 在实际环境中的性能和适用性将通过各种数据集和临床场景得到进一步验证和测试。
{"title":"Comparative Analysis of CNN Architectures for Automated Knee Segmentation in Medical Imaging: a Performance Evaluation","authors":"Anna Ghidotti, A. Vitali, D. Regazzoni, Miri Weiss Cohen, C. Rizzi","doi":"10.1115/1.4064450","DOIUrl":"https://doi.org/10.1115/1.4064450","url":null,"abstract":"\u0000 Segmentation of anatomical components is a major step in creating accurate and realistic 3D models of the human body, which are used in many clinical applications, including orthopedics. Recently, many deep learning approaches have been proposed to solve the problem of manual segmentation, that is time-consuming and operator-dependent. In the present study, SegResNet has been adapted from other domains, such as brain tumor, to segment knee bones from Magnetic Resonance images. This algorithm has been compared to the well-known U-Net in terms of evaluation metrics, such as Dice Similarity Coefficient and Hausdorff Distance. In the training phase, various combinations of hyper-parameters, such as epochs and learning rates, have been tested to determine which combination produced the most accurate results. Based on their comparable results, both U-Net and SegResNet performed well in accurately segmenting the femur. Dice Similarity Coefficients of 0.94 and Hausdorff Distances less than or equal to 1 mm indicate that both models are effective at capturing anatomical boundaries in the femur. According to the results of this study, SegResNet is a viable option for automating the creation of 3D femur models. In the future, the performance and applicability of SegResNet in real-world settings will be further validated and tested using a variety of datasets and clinical scenarios.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"56 46","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics 科学计算中的物理引导、物理信息和物理编码神经网络与运算器》(Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing):流体与固体力学
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-08 DOI: 10.1115/1.4064449
S. A. Faroughi, Nikhil M. Pawar, Célio Fernandes, Maziar Raissi, Subasish Das, Nima K. Kalantari, S. K. Mahjour
Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multi-physics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multi-physics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers.
近来,计算能力的进步使得利用机器学习和深度学习推动流体力学、固体力学、材料科学等一系列学科的科学计算成为可能。在这一混合过程中,神经网络的融入尤为关键。由于其固有的架构,传统的神经网络无法在数据稀少的情况下成功地进行训练和扩展,而许多科学和工程领域都存在这种情况。不过,神经网络为在训练过程中尊重物理驱动或知识约束提供了坚实的基础。一般来说,有三种不同的神经网络框架来执行底层物理:(i) 物理引导神经网络 (PgNN),(ii) 物理信息神经网络 (PiNN),以及 (iii) 物理编码神经网络 (PeNN)。这些方法在加速复杂多尺度多物理现象的数值建模方面具有明显优势。此外,神经算子(NOs)的最新发展为这些新的模拟范式增添了新的维度,尤其是在需要对复杂的多物理场系统进行实时预测时。所有这些模型都有其独特的缺点和局限性,需要进一步的基础研究。本研究旨在对科学计算研究中使用的四种神经网络框架(即 PgNNs、PiNNs、PeNNs 和 NOs)进行综述。本研究回顾了最先进的架构及其应用,讨论了其局限性,并从改进算法、考虑因果关系、扩展应用以及科学与深度学习求解器耦合等方面提出了未来的研究机会。
{"title":"Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics","authors":"S. A. Faroughi, Nikhil M. Pawar, Célio Fernandes, Maziar Raissi, Subasish Das, Nima K. Kalantari, S. K. Mahjour","doi":"10.1115/1.4064449","DOIUrl":"https://doi.org/10.1115/1.4064449","url":null,"abstract":"\u0000 Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data is sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multi-physics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multi-physics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"28 12","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139445874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Layered Security Guidance for Data Asset Management in Additive Manufacturing. 增材制造数据资产管理分层安全指南》。
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-01 DOI: 10.1115/1.4064128
Fahad Ali Milaat, Joshua Lubell

Manufacturing industries are increasingly adopting additive manufacturing (AM) technologies to produce functional parts in critical systems. However, the inherent complexity of both AM designs and AM processes render them attractive targets for cyber-attacks. Risk-based Information Technology (IT) and Operational Technology (OT) security guidance standards are useful resources for AM security practitioners, but the guidelines they provide are insufficient without additional AM-specific revisions. Therefore, a structured layering approach is needed to efficiently integrate these revisions with preexisting IT and OT security guidance standards. To implement such an approach, this paper proposes leveraging the National Institute of Standards and Technology's Cybersecurity Framework (CSF) to develop layered, risk-based guidance for fulfilling specific security outcomes. It begins with an in-depth literature review that reveals the importance of AM data and asset management to risk-based security. Next, this paper adopts the CSF asset identification and management security outcomes as an example for providing AM-specific guidance and identifies the AM geometry and process definitions to aid manufacturers in mapping data flows and documenting processes. Finally, this paper uses the Open Security Controls Assessment Language to integrate the AM-specific guidance together with existing IT and OT security guidance in a rigorous and traceable manner. This paper's contribution is to show how a risk-based layered approach enables the authoring, publishing, and management of AM-specific security guidance that is currently lacking. The authors believe implementation of the layered approach would result in value-added, non-redundant security guidance for AM that is consistent with the preexisting guidance.

制造业越来越多地采用增材制造(AM)技术来生产关键系统中的功能部件。然而,AM 设计和 AM 工艺固有的复杂性使其成为网络攻击的目标。基于风险的信息技术 (IT) 和操作技术 (OT) 安全指导标准是 AM 安全从业人员的有用资源,但如果不针对 AM 进行额外的修订,这些标准所提供的指导是不够的。因此,需要一种结构化的分层方法,将这些修订与现有的 IT 和 OT 安全指导标准有效整合。为了实施这种方法,本文建议利用美国国家标准与技术研究院的网络安全框架(CSF)来制定分层的、基于风险的指南,以实现特定的安全成果。本文首先进行了深入的文献综述,揭示了 AM 数据和资产管理对基于风险的安全的重要性。接下来,本文以 CSF 资产识别和管理安全成果为例,提供 AM 专用指南,并确定 AM 几何形状和流程定义,以帮助制造商绘制数据流和记录流程。最后,本文使用开放式安全控制评估语言,以严格和可追溯的方式将 AM 专用指南与现有的 IT 和 OT 安全指南整合在一起。本文的贡献在于展示了基于风险的分层方法如何实现目前缺乏的 AM 专用安全指南的编写、发布和管理。作者认为,分层方法的实施将产生增值的、非冗余的 AM 安全指南,并与现有指南保持一致。
{"title":"Layered Security Guidance for Data Asset Management in Additive Manufacturing.","authors":"Fahad Ali Milaat, Joshua Lubell","doi":"10.1115/1.4064128","DOIUrl":"10.1115/1.4064128","url":null,"abstract":"<p><p>Manufacturing industries are increasingly adopting additive manufacturing (AM) technologies to produce functional parts in critical systems. However, the inherent complexity of both AM designs and AM processes render them attractive targets for cyber-attacks. Risk-based Information Technology (IT) and Operational Technology (OT) security guidance standards are useful resources for AM security practitioners, but the guidelines they provide are insufficient without additional AM-specific revisions. Therefore, a structured layering approach is needed to efficiently integrate these revisions with preexisting IT and OT security guidance standards. To implement such an approach, this paper proposes leveraging the National Institute of Standards and Technology's Cybersecurity Framework (CSF) to develop layered, risk-based guidance for fulfilling specific security outcomes. It begins with an in-depth literature review that reveals the importance of AM data and asset management to risk-based security. Next, this paper adopts the CSF asset identification and management security outcomes as an example for providing AM-specific guidance and identifies the AM geometry and process definitions to aid manufacturers in mapping data flows and documenting processes. Finally, this paper uses the Open Security Controls Assessment Language to integrate the AM-specific guidance together with existing IT and OT security guidance in a rigorous and traceable manner. This paper's contribution is to show how a risk-based layered approach enables the authoring, publishing, and management of AM-specific security guidance that is currently lacking. The authors believe implementation of the layered approach would result in value-added, non-redundant security guidance for AM that is consistent with the preexisting guidance.</p>","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"24 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10895930/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Approach to Line Clipping Against a Rectangular Window 一种针对矩形窗口的线裁剪新方法
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-01-01 DOI: 10.1115/1.4062634
Hongfeng Yu, Y. He, W. J. Zhang
{"title":"A Novel Approach to Line Clipping Against a Rectangular Window","authors":"Hongfeng Yu, Y. He, W. J. Zhang","doi":"10.1115/1.4062634","DOIUrl":"https://doi.org/10.1115/1.4062634","url":null,"abstract":"","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"113 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82313876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool 用于检测可转位切削刀具刀尖座内承载区域的算法
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-12 DOI: 10.1115/1.4064255
Soner Camuz, Anders Liljerehn, Kristina Wärmefjord, R. Söderberg
Maintaining an even pressure distribution in an indexable cutting tool interface is crucial to the life expectancy of a carbide insert. Avoiding uneven pressure distribution is highly relevant for intermittent cutting operations because two load cases arise for full immersion, inside and outside the cutting zone, which can cause alternating contact positioning. Current positioning methodologies, such as 3-2-1 principles, do not consider external mechanical forces, which must be considered for insert-tool body positioning designs. Therefore, this paper proposes an algorithm to calculate a contact index to aid in the design of locating schemes for the early design phases of insert-tool body interface design. The results indicate that it is possible to visualize where a contact condition needs to exist to give support based on the mechanical loads acting on the insert.
在可转位切削刀具界面中保持均匀的压力分布对硬质合金刀片的使用寿命至关重要。避免压力分布不均与间歇性切削操作密切相关,因为在完全浸入时会出现切削区内外两种负载情况,这可能会导致交替接触定位。目前的定位方法,如 3-2-1 原则,没有考虑外部机械力,而这是刀片刀体定位设计必须考虑的因素。因此,本文提出了一种计算接触指数的算法,以帮助插刀体接口设计早期设计阶段的定位方案设计。结果表明,根据作用在刀片上的机械载荷,可以直观地看出需要存在接触条件以提供支持的位置。
{"title":"Algorithm for Detecting Load-Carrying Regions within the Tip Seat of an Indexable Cutting Tool","authors":"Soner Camuz, Anders Liljerehn, Kristina Wärmefjord, R. Söderberg","doi":"10.1115/1.4064255","DOIUrl":"https://doi.org/10.1115/1.4064255","url":null,"abstract":"\u0000 Maintaining an even pressure distribution in an indexable cutting tool interface is crucial to the life expectancy of a carbide insert. Avoiding uneven pressure distribution is highly relevant for intermittent cutting operations because two load cases arise for full immersion, inside and outside the cutting zone, which can cause alternating contact positioning. Current positioning methodologies, such as 3-2-1 principles, do not consider external mechanical forces, which must be considered for insert-tool body positioning designs. Therefore, this paper proposes an algorithm to calculate a contact index to aid in the design of locating schemes for the early design phases of insert-tool body interface design. The results indicate that it is possible to visualize where a contact condition needs to exist to give support based on the mechanical loads acting on the insert.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"13 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139007456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts 用于退役钢轴表面损伤检测的多尺度特征融合卷积神经网络
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-12 DOI: 10.1115/1.4064257
Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue
The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.
表面损伤检测是退役钢轴(RSS)再制造前的一个重要环节。传统的损伤检测主要由人工完成,既费时又容易出错。近年来,计算机视觉方法被引入表面损伤检测领域。然而,由于表面背景复杂,损伤模式和尺度丰富多样,一些先进的典型物体检测方法在检测 RSS 表面损伤时表现不佳。针对这些问题,我们提出了一种基于 Faster-RCNN 的 RSS 表面损伤检测方法。为了提高该网络的适应性,我们赋予它一个特征金字塔网络(FPN),并对区域建议网络(RPN)进行了可适应的多尺度信息修改。本文对基于 FPN 的特征提取网络和多尺度物体检测网络进行了详细研究。实验结果表明,与原始的 Faster-RCNN 相比,我们的方法在 RSS 表面损伤检测方面的 mAP 分数提高了 8.9%,小物体的平均检测精度提高了 18.2%。与目前先进的物体检测方法相比,我们的方法在多尺度物体检测方面更具优势。
{"title":"Multi-scale feature fusion convolutional neural network for surface damage detection in retired steel shafts","authors":"Weiwei Liu, Jiahe Qiu, YuJiang Wang, Tao Li, Shujie Liu, Guangda Hu, Lin Xue","doi":"10.1115/1.4064257","DOIUrl":"https://doi.org/10.1115/1.4064257","url":null,"abstract":"\u0000 The detection of surface damage is an important part of the process before remanufacturing retired steel shaft (RSS). Traditional damage detection is mainly done manually, which is time-consuming and error-prone. In recent years, computer vision methods have been introduced into the community of surface damage detection. However, some advanced typical object detection methods perform poorly in the detection of surface damage on RSS due to the complex surface background and rich diversity of damage patterns and scales. To address these issues, we propose a Faster-RCNN-based surface damage detection method for RSS. To improve the adaptability of the network, we endow it with a feature pyramid network (FPN) as well as adaptable multi-scale information modifications to the region proposal network (RPN). In this paper, a detailed study of an FPN-based feature extraction network and the multi-scale object detection network is conducted. Experimental results show that our method improves the mAP score by 8.9% compared with the original Faster-RCNN for surface damage detection of RSS, and the average detection accuracy for small objects is improved by 18.2%. Compared with the current advanced object detection methods, our method is more advantageous for the detection of multi-scale objects.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"24 13","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139010009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning in Computational Design Synthesis: A Comprehensive Review 计算设计合成中的深度学习:全面回顾
IF 3.1 3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-12-07 DOI: 10.1115/1.4064215
S. Singh, Rahul Rai, Raj Pradip Khawale, Darshil Patel, Dustin Bielecki, Ryan Nguyen, Jun Wang, Zhibo Zhang
A paradigm shift in the computational design synthesis domain is being witnessed by the onset of the innovative usage of machine learning techniques. The rapidly evolving paradigmatic shift calls for systematic and comprehensive assimilation of extant knowledge at the intersection of machine learning and computational design synthesis. Understanding nuances, identifying research gaps, and outlining the future direction for cutting-edge research is imperative. This paper outlines a hybrid literature review consisting of a thematic and framework synthesis survey to enable conceptual synthesis of information at the convergence of computational design, machine learning, and big-data models. The thematic literature survey aims at conducting an in-depth descriptive survey along the lines of a broader theme of machine learning in computational design. The framework synthesis-based survey tries to encapsulate the research findings in a conceptual framework to understand the domain better. The framework is based on the computational design synthesis (CDS) process, which consists of four sub-modules: representation, generation, evaluation, and guidance. Each sub-module has undergone an analysis to identify potential research gaps and formulate research questions. Additionally, we consider the limitations of our study and pinpoint the realms where the research can be extended in the future.
机器学习技术的创新应用见证了计算设计综合领域的范式转变。快速发展的范式转变要求在机器学习和计算设计综合的交叉点系统和全面地吸收现有知识。了解细微差别,确定研究差距,并概述前沿研究的未来方向是必要的。本文概述了由主题和框架综合调查组成的混合文献综述,以便在计算设计、机器学习和大数据模型的融合中实现信息的概念综合。主题文献调查旨在沿着计算设计中机器学习的更广泛主题进行深入的描述性调查。基于框架综合的调查试图将研究成果封装在一个概念框架中,以更好地理解该领域。该框架基于计算设计综合(CDS)过程,该过程由四个子模块组成:表示、生成、评估和指导。每个子模块都经过了分析,以确定潜在的研究差距和制定研究问题。此外,我们考虑了我们研究的局限性,并指出了未来研究可以扩展的领域。
{"title":"Deep Learning in Computational Design Synthesis: A Comprehensive Review","authors":"S. Singh, Rahul Rai, Raj Pradip Khawale, Darshil Patel, Dustin Bielecki, Ryan Nguyen, Jun Wang, Zhibo Zhang","doi":"10.1115/1.4064215","DOIUrl":"https://doi.org/10.1115/1.4064215","url":null,"abstract":"\u0000 A paradigm shift in the computational design synthesis domain is being witnessed by the onset of the innovative usage of machine learning techniques. The rapidly evolving paradigmatic shift calls for systematic and comprehensive assimilation of extant knowledge at the intersection of machine learning and computational design synthesis. Understanding nuances, identifying research gaps, and outlining the future direction for cutting-edge research is imperative. This paper outlines a hybrid literature review consisting of a thematic and framework synthesis survey to enable conceptual synthesis of information at the convergence of computational design, machine learning, and big-data models. The thematic literature survey aims at conducting an in-depth descriptive survey along the lines of a broader theme of machine learning in computational design. The framework synthesis-based survey tries to encapsulate the research findings in a conceptual framework to understand the domain better. The framework is based on the computational design synthesis (CDS) process, which consists of four sub-modules: representation, generation, evaluation, and guidance. Each sub-module has undergone an analysis to identify potential research gaps and formulate research questions. Additionally, we consider the limitations of our study and pinpoint the realms where the research can be extended in the future.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"31 7","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
JCISE Editorial Board - Year 2023 jise编辑委员会- 2023年
3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-10 DOI: 10.1115/1.4064046
Yan Wang
Abstract The Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to scientific computing methods (e.g., modeling, simulation, representation, algorithm) and computational tools (e.g., high-performance computing, virtual and augmented reality) that aim to improve engineering products and systems for their complete lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, and recycling). The interest areas include computational geometry, computer-aided design and manufacturing, cyber-physical systems, human-machine interface, machine intelligence, machine learning, modeling and simulation, precision engineering, product lifecycle management, reverse engineering, and systems engineering.
《工程计算与信息科学杂志》(JCISE)发表有关科学计算方法(例如,建模、仿真、表示、算法)和计算工具(例如,高性能计算、虚拟和增强现实)的文章,旨在改善工程产品和系统的整个生命周期(例如,设计、制造、操作、维护、处置和回收)。感兴趣的领域包括计算几何、计算机辅助设计和制造、网络物理系统、人机界面、机器智能、机器学习、建模和仿真、精密工程、产品生命周期管理、逆向工程和系统工程。
{"title":"JCISE Editorial Board - Year 2023","authors":"Yan Wang","doi":"10.1115/1.4064046","DOIUrl":"https://doi.org/10.1115/1.4064046","url":null,"abstract":"Abstract The Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to scientific computing methods (e.g., modeling, simulation, representation, algorithm) and computational tools (e.g., high-performance computing, virtual and augmented reality) that aim to improve engineering products and systems for their complete lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, and recycling). The interest areas include computational geometry, computer-aided design and manufacturing, cyber-physical systems, human-machine interface, machine intelligence, machine learning, modeling and simulation, precision engineering, product lifecycle management, reverse engineering, and systems engineering.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"20 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135092539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An automated approach for segmenting numerical control data with controller data for machine tools 一种用机床控制器数据分割数控数据的自动化方法
3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-08 DOI: 10.1115/1.4064036
Laetitia Monnier, William Bernstein, Vincenzo Ferrero, Sebti Foufou
Abstract Developing a more automated industrial digital thread is vital to realize the smart manufacturing and Industry 4.0 vision. The digital thread allows for efficient sharing across product lifecycle stages. Current techniques are not robust in relating downstream data, such as manufac- turing and inspection information, back to design for bet- ter decision making. In response, we previously presented a methodology that aligns numerical control (NC) code, a standard for representing machine tool instructions, to controller data represented in MTConnect, a standard that provides a vocabulary for generalizing execution logs from different machine tools and devices. This paper ex- tends our previous work by automating the tool identifi- cation using a k-means clustering algorithm to refine the alignment of the data. In doing so, we compare differ- ent distance techniques to analyze the spatial-temporal registration of the two datasets, i.e., the NC code and MTConnect data. Then, we assess the efficiency of our method through an error measurement technique that ex- presses the quality of the alignment. Finally, we apply our methodology to a case study that includes verified process plans and real execution data, derived from the Smart Manufacturing Systems Test Bed hosted at the National Institute of Standards and Technology. Our anal- ysis illustrates that dynamic time warping achieves the best point registration with the least errors compared with other alignment techniques.
开发更加自动化的工业数字线程是实现智能制造和工业4.0愿景的关键。数字线程允许跨产品生命周期阶段的有效共享。目前的技术在将下游数据(如制造和检验信息)与设计联系起来以做出更好的决策方面不够稳健。作为回应,我们之前提出了一种方法,将数控(NC)代码(表示机床指令的标准)与MTConnect中表示的控制器数据相一致,MTConnect提供了一个词汇表,用于概括来自不同机床和设备的执行日志。本文扩展了我们以前的工作,通过使用k-means聚类算法自动化工具识别来改进数据的对齐。在此过程中,我们比较了不同的距离技术来分析两个数据集(即NC代码和MTConnect数据)的时空配准。然后,我们通过误差测量技术来评估我们的方法的效率,该技术反映了校准的质量。最后,我们将我们的方法应用到一个案例研究中,该案例研究包括经过验证的过程计划和真实的执行数据,这些数据来自美国国家标准与技术研究所主办的智能制造系统测试平台。分析表明,与其他对准技术相比,动态时间翘曲能以最小的误差获得最佳的点配准效果。
{"title":"An automated approach for segmenting numerical control data with controller data for machine tools","authors":"Laetitia Monnier, William Bernstein, Vincenzo Ferrero, Sebti Foufou","doi":"10.1115/1.4064036","DOIUrl":"https://doi.org/10.1115/1.4064036","url":null,"abstract":"Abstract Developing a more automated industrial digital thread is vital to realize the smart manufacturing and Industry 4.0 vision. The digital thread allows for efficient sharing across product lifecycle stages. Current techniques are not robust in relating downstream data, such as manufac- turing and inspection information, back to design for bet- ter decision making. In response, we previously presented a methodology that aligns numerical control (NC) code, a standard for representing machine tool instructions, to controller data represented in MTConnect, a standard that provides a vocabulary for generalizing execution logs from different machine tools and devices. This paper ex- tends our previous work by automating the tool identifi- cation using a k-means clustering algorithm to refine the alignment of the data. In doing so, we compare differ- ent distance techniques to analyze the spatial-temporal registration of the two datasets, i.e., the NC code and MTConnect data. Then, we assess the efficiency of our method through an error measurement technique that ex- presses the quality of the alignment. Finally, we apply our methodology to a case study that includes verified process plans and real execution data, derived from the Smart Manufacturing Systems Test Bed hosted at the National Institute of Standards and Technology. Our anal- ysis illustrates that dynamic time warping achieves the best point registration with the least errors compared with other alignment techniques.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"98 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming Hand-drawn Sketches of Linkage Mechanisms into their Digital Representation 将连杆机构手绘草图转换为数字表示形式
3区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2023-11-08 DOI: 10.1115/1.4064037
Anar Nurizada, Anurag Purwar
Abstract This paper presents an approach based on deep neural networks for interactive digital transformation and simulation of n-bar planar linkages composed of revolute and prismatic joints from hand-drawn sketches. Rather than relying solely on computer vision, our approach leverages the topological knowledge of linkage mechanisms in combination with the output of a convolutional deep neural network. This creates a framework for recognition of hand-drawn sketches. Our methodology involves first generating a dataset of synthetic images of linkage mechanism sketches that resemble hand-drawn sketches. We then fine-tune a state-of-the-art deep neural network capable of detecting discrete objects using a set of building blocks of linkage mechanisms, specifically joints and links in various positions, scales, and orientations. We perform a topological analysis on the set of detected objects to create a kinematic model of the sketched mechanisms. Results indicate that our algorithm performs well on hand-drawn sketches, and it can aid in the conversion of such sketches into their digital representations. This has implications for effective communication, analysis, cataloging, and classification of planar mechanisms. Furthermore, our approach could lay the groundwork for image-based synthesis of planar mechanisms, which would be insensitive to their complexity or properties, such as the algebraic degree of the coupler curves.
摘要提出了一种基于深度神经网络的手绘n杆平面连杆机构的交互数字化转换与仿真方法。我们的方法不是仅仅依靠计算机视觉,而是利用链接机制的拓扑知识与卷积深度神经网络的输出相结合。这创建了一个识别手绘草图的框架。我们的方法包括首先生成一个类似于手绘草图的连杆机构草图的合成图像数据集。然后,我们对一个最先进的深度神经网络进行微调,该网络能够使用一组连接机制的构建块来检测离散对象,特别是各种位置、尺度和方向的关节和链接。我们对检测到的对象集进行拓扑分析,以创建草图机构的运动学模型。结果表明,我们的算法在手绘草图上表现良好,并且可以帮助将这些草图转换为数字表示。这对平面机构的有效交流、分析、编目和分类具有重要意义。此外,我们的方法可以为平面机构的基于图像的综合奠定基础,该综合将不受其复杂性或性质(如耦合器曲线的代数程度)的影响。
{"title":"Transforming Hand-drawn Sketches of Linkage Mechanisms into their Digital Representation","authors":"Anar Nurizada, Anurag Purwar","doi":"10.1115/1.4064037","DOIUrl":"https://doi.org/10.1115/1.4064037","url":null,"abstract":"Abstract This paper presents an approach based on deep neural networks for interactive digital transformation and simulation of n-bar planar linkages composed of revolute and prismatic joints from hand-drawn sketches. Rather than relying solely on computer vision, our approach leverages the topological knowledge of linkage mechanisms in combination with the output of a convolutional deep neural network. This creates a framework for recognition of hand-drawn sketches. Our methodology involves first generating a dataset of synthetic images of linkage mechanism sketches that resemble hand-drawn sketches. We then fine-tune a state-of-the-art deep neural network capable of detecting discrete objects using a set of building blocks of linkage mechanisms, specifically joints and links in various positions, scales, and orientations. We perform a topological analysis on the set of detected objects to create a kinematic model of the sketched mechanisms. Results indicate that our algorithm performs well on hand-drawn sketches, and it can aid in the conversion of such sketches into their digital representations. This has implications for effective communication, analysis, cataloging, and classification of planar mechanisms. Furthermore, our approach could lay the groundwork for image-based synthesis of planar mechanisms, which would be insensitive to their complexity or properties, such as the algebraic degree of the coupler curves.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"98 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computing and Information Science in Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1