S. B. Mallikarjuna, P. Shivakumara, Vijeta Khare, Vinay Kumar N, Basavanna M, U. Pal, Poornima B
{"title":"CNN BASED METHOD FOR MULTI-TYPE DISEASED ARECANUT IMAGE CLASSIFICATION","authors":"S. B. Mallikarjuna, P. Shivakumara, Vijeta Khare, Vinay Kumar N, Basavanna M, U. Pal, Poornima B","doi":"10.22452/mjcs.vol34no3.3","DOIUrl":null,"url":null,"abstract":"Arecanut image classification is a challenging task to the researchers and in this paper a new combined approach of multi-gradient images and deep convolutional neural networks for multi-type arecanut image classification is presented. To enhance the fine details in arecanut images affected by different diseases, namely, rot, split and rot-split, we propose to explore multiple-Sobel masks for convolving with the input image. Although, the images suffer from distortion due to disease infection, this masking operation helps to enhance the fine details. We believe that the fine details provide vital clues for classification of normal, rot, split and rot-split images. To extract such clues, we explore the combination of multi-gradient and AlexNet by feeding enhanced images as input. Implementation results on the four-class dataset indicate that the approach proposed is superior in terms of classification rate, recall, precision and F-measures. The same conclusion can be drawn from the results of comparative study of proposed method with the existing methods.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol34no3.3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Arecanut image classification is a challenging task to the researchers and in this paper a new combined approach of multi-gradient images and deep convolutional neural networks for multi-type arecanut image classification is presented. To enhance the fine details in arecanut images affected by different diseases, namely, rot, split and rot-split, we propose to explore multiple-Sobel masks for convolving with the input image. Although, the images suffer from distortion due to disease infection, this masking operation helps to enhance the fine details. We believe that the fine details provide vital clues for classification of normal, rot, split and rot-split images. To extract such clues, we explore the combination of multi-gradient and AlexNet by feeding enhanced images as input. Implementation results on the four-class dataset indicate that the approach proposed is superior in terms of classification rate, recall, precision and F-measures. The same conclusion can be drawn from the results of comparative study of proposed method with the existing methods.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus