Suhaib Kh. Hamed, Mohd Juzaiddin Ab Aziz, Mohd Ridzwan Yaakub
{"title":"DISINFORMATION DETECTION ABOUT ISLAMIC ISSUES ON SOCIAL MEDIA USING DEEP LEARNING TECHNIQUES","authors":"Suhaib Kh. Hamed, Mohd Juzaiddin Ab Aziz, Mohd Ridzwan Yaakub","doi":"10.22452/mjcs.vol36no3.3","DOIUrl":null,"url":null,"abstract":"Nowadays, many people receive news and information about what is happening around them from social media networks. These social media platforms are available free of charge and allow anyone to post news or information or express their opinion without any restrictions or verification, thus contributing to the dissemination of disinformation. Recently, disinformation about Islam has spread through pages and groups on social media dedicated to attacking the Islamic religion. Many studies have provided models for detecting fake news or misleading information in many domains, such as political, social, economic, and medical, except in the Islamic domain. Due to this negative impact of spreading disinformation targeting the Islamic religion, there is an increase in Islamophobia, which threatens societal peace. In this paper, we present a Bidirectional Long Short-Term Memory-based model trained on an Islamic dataset (RIDI) that was collected and labeled by two separate specialized groups. In addition, using a pre-trained word-embedding model will generate Out-Of-Vocabulary, because it deals with a specific domain. To address this issue, we have retrained the pre-trained Glove model on Islamic documents using the Mittens method. The results of the experiments proved that our proposed model based on Bidirectional Long Short-Term Memory with the retrained Glove model on the Islamic articles is efficient in dealing with text sequences better than unidirectional models and provides a detection accuracy of 95.42% of Area under the ROC Curve measure compared to the other models.","PeriodicalId":49894,"journal":{"name":"Malaysian Journal of Computer Science","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.22452/mjcs.vol36no3.3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, many people receive news and information about what is happening around them from social media networks. These social media platforms are available free of charge and allow anyone to post news or information or express their opinion without any restrictions or verification, thus contributing to the dissemination of disinformation. Recently, disinformation about Islam has spread through pages and groups on social media dedicated to attacking the Islamic religion. Many studies have provided models for detecting fake news or misleading information in many domains, such as political, social, economic, and medical, except in the Islamic domain. Due to this negative impact of spreading disinformation targeting the Islamic religion, there is an increase in Islamophobia, which threatens societal peace. In this paper, we present a Bidirectional Long Short-Term Memory-based model trained on an Islamic dataset (RIDI) that was collected and labeled by two separate specialized groups. In addition, using a pre-trained word-embedding model will generate Out-Of-Vocabulary, because it deals with a specific domain. To address this issue, we have retrained the pre-trained Glove model on Islamic documents using the Mittens method. The results of the experiments proved that our proposed model based on Bidirectional Long Short-Term Memory with the retrained Glove model on the Islamic articles is efficient in dealing with text sequences better than unidirectional models and provides a detection accuracy of 95.42% of Area under the ROC Curve measure compared to the other models.
期刊介绍:
The Malaysian Journal of Computer Science (ISSN 0127-9084) is published four times a year in January, April, July and October by the Faculty of Computer Science and Information Technology, University of Malaya, since 1985. Over the years, the journal has gained popularity and the number of paper submissions has increased steadily. The rigorous reviews from the referees have helped in ensuring that the high standard of the journal is maintained. The objectives are to promote exchange of information and knowledge in research work, new inventions/developments of Computer Science and on the use of Information Technology towards the structuring of an information-rich society and to assist the academic staff from local and foreign universities, business and industrial sectors, government departments and academic institutions on publishing research results and studies in Computer Science and Information Technology through a scholarly publication. The journal is being indexed and abstracted by Clarivate Analytics'' Web of Science and Elsevier''s Scopus