The Quebrada Negra wetland study: An approach to understand plant diversity, hydrology, and hydrogeology of high‐Andean wetlands

IF 6.8 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Wiley Interdisciplinary Reviews: Water Pub Date : 2023-08-16 DOI:10.1002/wat2.1683
F. Suárez, A. Sarabia, P. Sanzana, C. Latorre, J. Muñoz
{"title":"The Quebrada Negra wetland study: An approach to understand plant diversity, hydrology, and hydrogeology of high‐Andean wetlands","authors":"F. Suárez, A. Sarabia, P. Sanzana, C. Latorre, J. Muñoz","doi":"10.1002/wat2.1683","DOIUrl":null,"url":null,"abstract":"High‐Andean peatlands are high‐altitude wetland ecosystems found throughout the arid central Andes of South America. They form through the establishment of specialized grasses and cushion sedges that are well‐adapted to cold temperatures, in areas where groundwater emerges. The Silala River is a groundwater‐fed high‐Andean fluvial system, which emerges in various springs that generate wetlands, the Cajones and Orientales (Bolivia), the river's headwater sources, and the Quebrada Negra (Chile) being the most important. This article reviews detailed monitoring undertaken in the undisturbed Quebrada Negra wetland to provide insights into wetland processes, and to compare its functioning to that of the Bolivian wetlands, which were channelized a century ago. Vegetation composition was found to be similar among the three wetlands, and their spatiotemporal vegetation cover distribution showed strong seasonal and interannual variability. The channelized Bolivian wetlands have the highest annual actual evapotranspiration values (~700 mm, due to their higher vegetation vigor), as estimated using remote sensing, ~10% greater than that obtained in the undisturbed Quebrada Negra wetland. For the Quebrada Negra wetland, groundwater monitoring revealed that hydraulic head contours are consistent with the topography, although water sources to the wetland are complex to identify. While significant groundwater inflows arise at the wetland edges, upwelling and downwelling conditions are observed at various locations within the wetland, similar to other high‐Andean wetlands. The observations suggest that while the underlying groundwater discharge sustains the saturated conditions of the wetland, the spatial variability of groundwater inputs results in a negligible impact of channelization on wetland evapotranspiration.This article is categorized under:\nWater and Life > Stresses and Pressures on Ecosystems\nScience of Water > Hydrological Processes\n","PeriodicalId":23774,"journal":{"name":"Wiley Interdisciplinary Reviews: Water","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Water","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/wat2.1683","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

High‐Andean peatlands are high‐altitude wetland ecosystems found throughout the arid central Andes of South America. They form through the establishment of specialized grasses and cushion sedges that are well‐adapted to cold temperatures, in areas where groundwater emerges. The Silala River is a groundwater‐fed high‐Andean fluvial system, which emerges in various springs that generate wetlands, the Cajones and Orientales (Bolivia), the river's headwater sources, and the Quebrada Negra (Chile) being the most important. This article reviews detailed monitoring undertaken in the undisturbed Quebrada Negra wetland to provide insights into wetland processes, and to compare its functioning to that of the Bolivian wetlands, which were channelized a century ago. Vegetation composition was found to be similar among the three wetlands, and their spatiotemporal vegetation cover distribution showed strong seasonal and interannual variability. The channelized Bolivian wetlands have the highest annual actual evapotranspiration values (~700 mm, due to their higher vegetation vigor), as estimated using remote sensing, ~10% greater than that obtained in the undisturbed Quebrada Negra wetland. For the Quebrada Negra wetland, groundwater monitoring revealed that hydraulic head contours are consistent with the topography, although water sources to the wetland are complex to identify. While significant groundwater inflows arise at the wetland edges, upwelling and downwelling conditions are observed at various locations within the wetland, similar to other high‐Andean wetlands. The observations suggest that while the underlying groundwater discharge sustains the saturated conditions of the wetland, the spatial variability of groundwater inputs results in a negligible impact of channelization on wetland evapotranspiration.This article is categorized under: Water and Life > Stresses and Pressures on Ecosystems Science of Water > Hydrological Processes
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quebrada Negra湿地研究:了解高安第斯湿地植物多样性、水文和水文地质的方法
高安第斯泥炭地是在南美洲干旱的安第斯山脉中部发现的高海拔湿地生态系统。它们是通过在地下水出现的地区建立专门的草和缓冲莎草而形成的,这些草和缓冲莎草很好地适应了寒冷的温度。西拉拉河是一个由地下水补给的安第斯高原河流系统,它在各种泉水中出现,形成湿地,卡琼斯和东方(玻利维亚),河流的源头,以及克布拉达内格拉(智利)是最重要的。本文回顾了在未受干扰的Quebrada Negra湿地进行的详细监测,以提供对湿地过程的见解,并将其功能与一个世纪前渠化的玻利维亚湿地进行比较。3个湿地的植被组成相似,植被覆盖时空分布表现出较强的季节和年际变化。河道化的玻利维亚湿地具有最高的年实际蒸散值(~700 mm,由于其植被活力较高),根据遥感估计,比未受干扰的Quebrada Negra湿地高~10%。对于Quebrada Negra湿地,地下水监测显示水头轮廓与地形一致,尽管湿地的水源很难识别。虽然大量地下水流入出现在湿地边缘,但在湿地内的不同位置观察到上升流和下升流条件,类似于其他高安第斯湿地。研究结果表明,虽然地下地下水排放维持了湿地的饱和状态,但地下水输入的空间变异性导致渠化对湿地蒸散发的影响可以忽略不计。本文分类为:水与生命;生态系统的压力与压力;水科学;水文过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Wiley Interdisciplinary Reviews: Water
Wiley Interdisciplinary Reviews: Water Environmental Science-Ecology
CiteScore
16.60
自引率
3.70%
发文量
56
期刊介绍: The WIREs series is truly unique, blending the best aspects of encyclopedic reference works and review journals into a dynamic online format. These remarkable resources foster a research culture that transcends disciplinary boundaries, all while upholding the utmost scientific and presentation excellence. However, they go beyond traditional publications and are, in essence, ever-evolving databases of the latest cutting-edge reviews.
期刊最新文献
Holocene sedimentary history of the Silala River (Antofagasta Region, Chile) MAD Water: Integrating Modular, Adaptive, and Decentralized Approaches for Water Security in the Climate Change Era. Advances and gaps in the science and practice of impact‐based forecasting of droughts The geological evolution of the Silala River basin, Central Andes Hydrogeological characterization of the Silala River catchment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1