Forecasting an explosive time series

IF 0.6 Q4 STATISTICS & PROBABILITY Electronic Journal of Applied Statistical Analysis Pub Date : 2019-11-20 DOI:10.1285/I20705948V12N3P674
K. SureshChandra, S. Prabhakaran
{"title":"Forecasting an explosive time series","authors":"K. SureshChandra, S. Prabhakaran","doi":"10.1285/I20705948V12N3P674","DOIUrl":null,"url":null,"abstract":"Forecasting is an important exercise in Time series analysis. For a statio-nary time series, there are theoretically strong forecasting methods which canprovide most accurate forecasts for the future (Karlin and Taylor (1975)).For most non stationary time series Box Jenkins methodology is a usefulforecasting technique. Essentially, the Box Jenkins methodology assumesthat any non stationarity time series can be conveniently modeled as anAutoregressive Intregrated Moving Averages (ARIMA) model with sucientnumber of unit roots in the linear stochastic dierence equation generatingthe time series. The non stationarity in such time series is then removed bysuccessively dierencing of the series until one obtains a stationary series,for which optimal forecasts can be computed. The forecasts for the originalseries are then computed by `inverting' the dierence operators that wereused ( Makridakis et al. (1998)) on the forecasts computed for the statio-nary series. The main objective of this study is to demonstrate that the BoxJenkins methodology is not useful, especially in large time series, when thenon stationarity in the time series is due to `explosive' roots. An alternativemethod is proposed in such a situation and its performance is assessed bothon a simulated as well as on a real life data.","PeriodicalId":44770,"journal":{"name":"Electronic Journal of Applied Statistical Analysis","volume":"12 1","pages":"674-690"},"PeriodicalIF":0.6000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1285/I20705948V12N3P674","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Applied Statistical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1285/I20705948V12N3P674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Forecasting is an important exercise in Time series analysis. For a statio-nary time series, there are theoretically strong forecasting methods which canprovide most accurate forecasts for the future (Karlin and Taylor (1975)).For most non stationary time series Box Jenkins methodology is a usefulforecasting technique. Essentially, the Box Jenkins methodology assumesthat any non stationarity time series can be conveniently modeled as anAutoregressive Intregrated Moving Averages (ARIMA) model with sucientnumber of unit roots in the linear stochastic dierence equation generatingthe time series. The non stationarity in such time series is then removed bysuccessively dierencing of the series until one obtains a stationary series,for which optimal forecasts can be computed. The forecasts for the originalseries are then computed by `inverting' the dierence operators that wereused ( Makridakis et al. (1998)) on the forecasts computed for the statio-nary series. The main objective of this study is to demonstrate that the BoxJenkins methodology is not useful, especially in large time series, when thenon stationarity in the time series is due to `explosive' roots. An alternativemethod is proposed in such a situation and its performance is assessed bothon a simulated as well as on a real life data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测爆炸性的时间序列
预测是时间序列分析中的一项重要工作。对于一个平稳的时间序列,有理论上强大的预测方法,可以提供最准确的预测未来(Karlin和Taylor(1975))。对于大多数非平稳时间序列,Box Jenkins方法是一种有用的预测技术。从本质上讲,Box Jenkins方法假设任何非平稳时间序列都可以方便地建模为自回归积分移动平均(ARIMA)模型,该模型具有线性随机差分方程中产生时间序列的单位根的数量。然后通过序列的连续差分去除这些时间序列中的非平稳性,直到得到一个平稳序列,从而可以计算出最优的预测。原始序列的预测然后通过“反转”对静态序列计算的预测所使用的差分算子(Makridakis et al.(1998))来计算。本研究的主要目的是证明BoxJenkins方法是无用的,特别是在大时间序列中,当时间序列的非平稳性是由于“爆炸”根时。在这种情况下,提出了一种替代方法,并对其性能进行了模拟和实际数据的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
0
期刊最新文献
Exploratory Data Analysis of Accuracy of US Weather Forecastes Extended asymmetry model based on logit transformation and decomposition of symmetry for square contingency tables with ordered categories Generalized Quasi Lindley Distribution: Theoretical Properties, Estimation Methods, and Applications Almost unbiased ridge estimator in the count data regression models Does the elimination of work flexibility contribute to reducing wage inequality? Empirical evidence from Ecuador
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1